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Introdu
tionL'informatique est la s
ien
e du traitement automatique de l'information. Lavision par ordinateur en est une bran
he, dont l'obje
tif est le traitement au-tomatique d'informations de nature visuelle. Elle est née dans les années 70
omme une bran
he de l'intelligen
e arti�
ielle. Son projet initial était de do-ter des ordinateurs ou des robots d'une vision similaire à la vision biologique� une appli
ation typique étant de permettre à un robot muni d'unes ou plu-sieurs 
améras de se dépla
er de façon autonome dans son environnement.Parmi les problèmes auxquels la vision par ordinateur s'intéresse �gurentdon
 la re
onstru
tion tridimensionnelle de l'environnement à partir d'uneou plusieurs images, la séparation d'une image en 
omposantes pertinentes �par exemple un objet et son arrière-plan � appelée segmentation, puis l'ob-tention d'information de plus haut niveau 
on
ernant l'environnement � parexemple re
onnaitre tel ou tel objet � en vue d'interagir ave
 
elui-
i.Ce programme général est loin d'être résolu, mais en empruntant à de nom-breuses dis
iplines, telles les mathématiques, le traitement du signal et l'ap-prentissage, la vision par ordinateur a néanmoins développé un grand nombred'outils permettant l'analyse et le traitement d'images ou de séquen
es d'images,ouvrant la voie à des appli
ations dans de nombreux 
hamps.En parallèle d'appli
ations dont le béné�
e so
ial est sujet à 
aution � ap-pli
ations militaires et videosurveillan
e � la vision par ordinateur a permisdes progrès 
onsidérables dans le 
adre de l'imagerie médi
ale. L'émergen
eré
ente de nouvelles modalités d'imagerie (IRM et ses variantes, MEEG,PET. . .) a permis des avan
ées importantes en terme de diagnosti
 de pa-thologies et de 
ompréhension du fon
tionnement des être vivants, mais aégalement 
réé un besoin d'outils permettant d'analyser des données de plusen plus volumineuses, dont le traitement manuel par un expert peut s'avérer9



10 TABLE DES MATIÈREStrès 
outeux en temps, voire impossible.Ce travail de thèse propose quelques appli
ations du formalisme des plus
ourts 
hemins à la segmentation de stru
tures anatomiques dans des imagesmédi
ales issues de modalités diverses.OutlineChapter I proposes a general viewpoint of shortest paths problems in dis
reteor 
ontinuous spa
es, and mentions some appli
ations of this formalism in
omputer s
ien
e, as well as in other domains. It introdu
es some notionsabout shortest paths in Riemannian manifolds, and in spa
es equipped witha potential, i.e. in whi
h displa
ement speed is not ne
essarily 
onstant in thewhole spa
e.Chapter II details some algorithms to 
ompute shortest paths. The exposi-tion fo
uses on Dijkstra algorithm in the dis
rete 
ase, and on Fast-Mar
hingin the 
ontinuous 
ase. We propose a uni�ed presentation of those two algo-rithms. A new 
onvergen
e proof of Fast-Mar
hing is proposed in the 
ase ofa bidimensional spa
e equipped with an isotropi
 potential and dis
retized ona regular grid. Our formalism is extended to more and more general spa
es.Finally, we show 
onvergen
e of Fast-Mar
hing on a Riemannian manifoldequipped with an anisotropi
 potential, provided the dis
retization satis�essome 
ondition we will detail in the sequel.The next 
hapter are dedi
ated to appli
ations of this algorithm to analysisof medi
al images. A 
entral idea of our work is to 
ompute shortest pathsin abstra
t spa
es � derived from the image spa
e � but whi
h 
ontain moreinformation, typi
ally 
on
erning the orientation of the anatomi
al stru
tureswe wish to segment.Chapter III shows how su
h a formalism 
an be used to segment tubularstru
ture in bidimensional images � typi
ally blood vessels, but we will showthat it 
an also be applied to road segmentation in satellite images. Ourmain 
ontribution is to use a four-dimensional spa
e whi
h takes into a

ountorientation and radius of the vessels. We will show several advantages to usesu
h a spa
e.



TABLE DES MATIÈRES 11We will also apply this framework to the segmentation of 
orti
al imagesfrom a blood �ow analysis, and propose an extension to an iterative methodfor the segmentation of a network of tubular stru
tures.Chapter IV is an appli
ation of shortest paths to the analysis of di�usionMRI with high angular resolution data. We will use a spa
e of dimension �veto perform this task.The �rst appendix ta
kles problems related with shortest paths 
omputa-tions. It ta
kles the 
omputation of shortest paths in the presen
e of a maskwhi
h forbids a part of spa
e, as well as the 
omputation of some 
onne
tivitymeasures.The se
ond appendix 
onsists in an independent work about the semi-automati
labelling of ele
trodes in Ele
troen
ephalography (EEG). This work is a partof a not-yet developed system to qui
kly obtain tridimensional 
alibration ofele
trodes during EEG experiments.All this work has given rise to publi
ations in 
omputer vision and medi
alimaging 
onferen
es. Chapter III is adapted from the arti
le Extra
tion ofTubular Stru
tures over an orientation domain published in the 
onferen
eComputer Vision and Pattern Re
ognition 2009 [167℄, with Gabriel Peyréand Renaud Keriven, and of SIFT-based Sequen
e Registration and Flow-based Corti
al Vessel Segmentation applied to High Resolution Opti
al Ima-ging Data[168℄, published in International Symposium on Biomedi
al Imaging2008 with Thomas Deneux, Ivo Vanzetta and Renaud Keriven. The end ofthe 
hapter is published as a resear
h report, and is 
urrently under reviewin Medi
al Image Analysis. A part of the work exposed in 
hapter IV waspublished in Medi
al Image Computing and Computer Assisted Intervention2009, with Maxime Des
oteaux and Renaud Keriven.Finally, appendix B 
orresponds to an independent work published in theMedi
al Image Computing and Computer Assisted Intervention 2007 [166℄with Renaud Keriven, Théodore Papadopoulo and Jean-Mi
hel Badier.Implementations were done mainly in C++, using the CertisLib library, de-veloped by the CERTIS team. Visualisation and analysis of data were perfor-med usingMatlab, Paraview and BrainVizu for the work presented in 
hapterIV.
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Chapitre IShortest paths� Le 
hemin le plus 
ourt d'un point à un autre est la ligne droite,à 
ondition que les deux points soient bien en fa
e l'un de l'autre. �(�The shortest path from one point to another is the straight line,provided that the two points are squarely in front of ea
h other�)(Pierre Da
, Fran
is Blan
he)Introdu
tionComputing shortest path is a spe
i�
 instan
e of optimisation problem, anda major human 
on
ern : ea
h time we ask ourselves if we would bettertake motorway rather than trunk road, whi
h route to follow in order to gofrom Saint-Malo to Pointe-à-Pitre, how to solve a Rubik's Cube in a minimalnumber of moves, how to get our knight from 
3 to e5, or if we should takeline 6 then 13 rather than 8 then 13 to go from Daumesnil to Varenne, we areattempting to solve a shortest path problem � or at least to 
ompare severalpaths whi
h have the same extremities � typi
ally the pla
e where we are,and the pla
e where we want to go.In view of the diversity of these problem, the 
ommonpla
e that the shortestpath between two points is a straight line is 
learly not su�
ient. Short doesit mean short in spa
e or in time ? What is a straight line in a Rubik's Cube ?In short, what are we talking about exa
tly ?13
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• In whi
h spa
e are we moving ? Is it a tridimensional Eu
lidean spa
e ? Arelativist spa
e ? A dis
rete spa
e ? Are there obsta
les ?
• What is a path in that spa
e ?
• What is the 
ost asso
iated with this path ? For example, do we want to�nd the shortest or the qui
kest path ?Now 
ome the more alarming questions :
• is there a (one only) shortest path ?And, if the answer is yes,
• how to 
ompute it ?Se
tion I.1 des
ribes a general framework for shortest paths, and enun
iatessome basi
 properties. Se
tion I.2 fo
uses on dis
rete shortest paths. Finally,se
tion I.3 des
ribes many framework for 
ontinuous shortest paths problems,details some appli
ations, and gives some mathemati
al properties of the
onsidered spa
es.ContentsI.1 Generalities on shortest paths . . . . . . . . . . . . 14I.2 Dis
rete Shortest Paths . . . . . . . . . . . . . . . . 17I.2.1 Dire
ted graphs . . . . . . . . . . . . . . . . . . . . 17I.2.2 Undire
ted Graph . . . . . . . . . . . . . . . . . . 18I.2.3 Existen
e and uniqueness of shortest paths . . . . 18I.2.4 Appli
ations . . . . . . . . . . . . . . . . . . . . . . 21I.3 Continuous shortest paths and distan
e maps . . 22I.3.1 Di�erent frameworks for 
ontinuous shortest paths 22I.3.2 Theoreti
al aspe
ts . . . . . . . . . . . . . . . . . . 33I.4 Con
lusion . . . . . . . . . . . . . . . . . . . . . . . . 38
I.1 Generalities on shortest pathsLet E be a set.In this work, we are interested in a spe
i�
 
lass of shortest path problems.In parti
ular, we will impose that :
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• a path has a starting point and an ending point � if we denote by Cst theset of paths from s ∈ E to t ∈ E, the set {Cst |(s, t) ∈ E2} is a partition(whi
h 
an 
ontain the empty set) of the set of all the paths C,
• the paths 
an be 
on
atenated if they are 
ompatibles : if C1 ∈ CXY and
C2 ∈ CY Z , then C1@C2 ∈ CXZ : @ is a partial asso
iative binary operationon the set of paths C,
• a 
ost fun
tion c from C to F is de�ned � where F is an ordered setequipped with a binary operation + whi
h is 
ompatible with the orderrelation. We furthermore impose that c(C1@C2) = c(C1) + c(C2) for all
ompatible paths.
• for all s ∈ E, there exist a path in Css with null 
ost, and neutral for @.Let us also introdu
e the notion of subpath :De�nition I.1.0.1 (Subpath)Let C ∈ Cst be a path from s to t. C ′ is a subpath of C if and only if thereexists two paths C1 and C2 su
h that C = C1@C

′@C2.In the sequel, we will fo
us on the F = R
+ 
ase, in whi
h the 
ost 
an benaturally interpreted in terms of length (or duration) of the path.We then de�ne the distan
e between two points s and t by :

d(s, t)
def.
=

{
inf

γ∈Cst

c(γ) if Cst 6= ∅
+∞ otherwise

(I.1.1)We then haveProposition I.1.0.1
d satis�es the triangular inequalityProof : Let us 
onsider s, t and u ∈ E. If Cst = ∅ or Ctu = ∅, we 
learly have d(s, u) ≤

d(s, t) + d(t, u). Otherwise, we 
hose ǫ > 0. By de�nition of d(s, t) and d(t, u), there existstwo paths γ1 ∈ Cst and γ2 ∈ Ctu su
h that c(γ1) ≤ d(s, t) + ǫ/2 and c(γ2) ≤ d(t, u) + ǫ/2.Then, γ1@γ2 ∈ Cst and c(γ1@γ2) ≤ d(s, t) + d(t, u) + ǫ, hen
e d(s, u) ≤ d(s, t) + d(t, u).
�If we �x a point s ∈ E, and if the distan
e from s to any other point in E is�nite, we get the following fun
tion :
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Us

def.
=

{

E → R
+

t 7→ d(s, t)
(I.1.2)
alled distan
e map from s.We 
all shortest path between two points s and t any path of Cst with length

d(s, t) :
γ∗(s, t)

def.
= argmin

γ∈Cst

c(γ) (I.1.3)Existen
e or uniqueness of shortest paths are not guaranteed, and stronglydepends on the properties on the spa
e E.Equipped with this nutshell formalism, we already 
an enun
iate the follo-wing property :Proposition I.1.0.2A subpath of a shortest path is a shortest path.Proof : Let C ∈ Cst be a shortest path, and C ′ ∈ Cuv a subpath of C. Let C1 and C2 betwo paths su
h that C = C1@C ′@C2. We have c(C) = c(C1)+c(C ′)+c(C2). Let us assumethat C ′ is not a shortest path from u to v. Then there exists a path C ′′ ∈ Cuv su
h that
c(C ′′) < c(C ′). Then, C1@C ′′@C2 ∈ Cst and c(C1@C ′′@C2) = c(C1) + c(C ′′) + c(C2) <

c(C), whi
h is absurd.
�Shortest paths between sets The shortest path notion 
an be generali-sed to starting and ending sets of points.If S ⊂ E and T ⊂ E, we 
an de�ne the set of all path from S to T as

CST
def.
=
⋃

s∈S
t∈T

Cst (I.1.4)and then the distan
e between those sets as
d(S, T )

def.
=

{
inf

γ∈CST

c(γ) if Cst 6= 0

+∞ otherwise
= inf

s∈S
t∈T

d(s, t) (I.1.5)



I.2 Dis
rete Shortest Paths 17along with the distan
e map from S :
US

def.
=

{

E → R
+

t 7→ d(S, {t}) (I.1.6)A shortest path between S and T is a path rea
hing the distan
e (if it exists) :
γ∗(S, T )

def.
= argmin

γ∈CST

c(γ) (I.1.7)In the sequel, we will handle shortest paths and distan
e maps problemsin whi
h the entire spa
e is know a priori � not dis
overed progressivelyduring 
omputation, whi
h is often the 
ase for motion planning problems inroboti
s.Su
h problems 
an be 
lassi�ed in two main 
lasses, depending on the 
onti-nuous or dis
rete 
hara
ter of the spa
e E.I.2 Dis
rete Shortest PathsMost of the dis
rete shortest paths problems 
an be re
ast in graph theoryterms. A very good introdu
tion to graph theory and its algorithms 
an befound in [3℄.I.2.1 Dire
ted graphsLet (S,A,w) be a graph in whi
h S is a �nite set of verti
es, A ⊂ S × Sis the set of edges linking the verti
es and w : A → R is a weight fun
tionde�ned on the edges.We 
all path from s ∈ S to t ∈ S any su

ession (s0, a0, s1, . . . , am−1, sm) m ∈
N of edges and verti
es su
h that
• s0 = s

• sm = t

• ∀i ∈ [0,m− 1] ai = (si, si+1).We thus de�ne the 
on
atenation of two 
ompatible paths in the followingway :
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(s0, a0, . . . am−1, sm)@(t0, b0, . . . bn−1, tn) =

(s0, a0, . . . am−1, sm = t0, b0, . . . bn−1, tn)
(I.2.1)and the length of the path (�gure 1.1) γ = (s0, a0, s1, . . . , am, sm) as

c(γ)
def.
=

m∑

i=1

w(ai) (I.2.2)In parti
ular, (s0) is a path from s0 to itself, of null length.
s1

s3

s2
s5

s4

s6

21 1 2 233 51Fig. 1.1 � An example of graph. (s1, (s1, s2), s2, (s2, s4), s4, (s4, s5), s5) is apath from s1 to s5 of length 6.
I.2.2 Undire
ted GraphShortest paths problems on undire
ted graphs is a spe
i�
 
ase of the previousproblem. To any undire
ted graph, we 
an asso
iate a dire
ted graph byrepla
ing every edge by two opposite edges of same weight.I.2.3 Existen
e and uniqueness of shortest pathsThe existen
e of a shortest path is not guaranteed on a graph :
• there 
an be no path between two verti
es (�gure 1.2, left).
• there 
an a path but no minimal path (�gure 1.2, right).
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s

t

4 -3 2 -2 3 s

1
2

3
4 t

4 -3 2 -1 2-3 3-3
Fig. 1.2 � Left : a graph without path from s to t. Right : agraph without shortest path from s to t. The negative length loop
(1, (1, 2), 2, (2, 4), 4, (4, 3), 3, (3, 1), 1 allows to �nd arbitrary small paths bet-ween the points.However, we have the following property :Proposition I.2.3.1Let (S,A,w) be a graph, su
h that w : A→ R

+. Let s and t ∈ S.If Cst 6= ∅, then a shortest path exists from s to t.Proof :
• First, noti
e that for all path in Cst, there exist a shortest path without loop in Cst,
• then noti
e that there is a �nite number of paths without loop from s to t, hen
e theexisten
e of a minimal length path, whi
h is also a shortest path in Cst.

�

In parti
ular, in a strongly 
onne
ted graph with positive weights, shortestpaths exist between any pair of verti
es.



20 Shortest pathsHere is an interesting property of shortest paths between ont vertex s andall other verti
es.Proposition I.2.3.2Let (S,A,w) be a graph, with w : A → R
+. Let s ∈ S. Then, there exist atree A build from S su
h that

• s is the root of the tree ;
• t is a node of the tree if and only if there exists a shortest path from s to
t ;
• if the paternity relation in A is denoted by p, (s . . . p(t), (p(t), t), t) is ashortest path from s to t.Proof :This tree is simply a set of edges whi
h 
ontains a shortest path from s to all a

essiblevertex t, and whi
h is minimal for in
lusion.

�Su
h a tree is 
alled shortest paths tree (�gure 1.3).
s 1

4 7 12 1 21 1
3772 0 4

1
2
3

4
1Fig. 1.3 � Distan
e map and shortest path tree from vertex sIn se
tion II.1.1, we will explain how to 
ompute su
h distan
e maps andshortest path trees.



I.2 Dis
rete Shortest Paths 21I.2.4 Appli
ationsA huge amount of problems 
an be re
ast in this framework. It is pointlessto try and draw up a 
omplete map of possible appli
ations. Let us 
ite some
lassi
al problems.
• A 
lassi
al appli
ation of shortest paths on graph is the 
omputation oftraje
tories over transportation networks. Edges 
orrespond to portions ofroads, and verti
es to interse
tions. Weights a

ount for the time to travelalong a portion of road.
• This framework is used to 
ompute routing in ele
troni
 data networks [205℄.Verti
es represent routers (or other nodes), and edges represent 
onnexionsbetween routers. Weights depend on the available bandwidth.
• The 
omputation of knight moves we mentioned earlier 
an be 
asted ina sear
h of shortest path on a graph (�gure 1.4). More generally, for allsystem with a �nite number of states, and transitions between those state,�nding paths between two states 
an be done by 
omputing shortest pathsin a graph with 
onstant weights.

Fig. 1.4 � Undire
ted graph 
orresponding to the possible moves of a knightover a 
hessboard. Ea
h vertex 
orresponds to a square, ea
h edge to a pos-sible move. In red, yellow, and green : three paths from e3 to 
5 in a minimalnumber of moves.
• More generally, all dynami
 programming problems 
an be formulated interms of shortest paths problem in a graph. [131℄.
• Some linear programming problem 
an be re
ast in dis
rete shortest paths



22 Shortest pathsShortest pathsin R
n

Shortest pathsin R
n+ speed Shortest pathsin manifolds

Shortest pathsin R
n+ anisotropy Shortest pathsin Riemannianmanifolds

Shortest pathsin a subsetof R
n

Fig. 1.5 � Di�erent 
ontinuous shortest paths problems
omputation [40℄.
• Many motion planning problems 
an also be formulated in this frame-work [113℄.I.3 Continuous shortest paths and distan
e mapsI.3.1 Di�erent frameworks for 
ontinuous shortest pathsIn this se
tion, we will present some shortest paths problems whi
h o

urin di�erent domains, and require di�erent theoreti
al frameworks. Figure 1.5synthesises these frameworks.Let us 
onsider a 
ontinuous spa
e E � for pra
ti
al purposes, E is generallya subset of R

n or a �nite dimension manifold.We de�ne a path as a fun
tion C0 and pie
ewise-C1 from [0, 1] to E � this
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f(0)

f(1)

Fig. 1.6 � A path in R
2
ondition being su�
ient in order to de�ne the length of su
h a 
urve 1. If fis su
h a path, the extremities of f are f(0) and f(1) (�gure 1.6).The 
on
atenation of two paths f1 : [0, 1]→ E and f2 : [0, 1]→ E is de�nedas

f1@f2
def.
=

{

t ∈ [0, 1/2] 7→ f1(2t)

t ∈]1/2, 1] 7→ f2(2t− 1)
(I.3.1)I.3.1.1 Shortest paths in R

n : the straight line strikes ba
kLet us de�ne E = R
n, with n ≥ 1.The length of a 
urve f is de�ned by

L(f)
def.
=

∫ 1

0

‖f ′(t)‖dt (I.3.2)Noti
e that this quantity is invariant when one reparametrise the 
urve. Inparti
ular, if we use the ar
 length, we get
L(f) =

∫ L(f)

0

‖f ′(s)‖ds (I.3.3)1still, it is not ne
essary : it is possible to de�ne a length for a more general 
lass of
urves, namely re
ti�able 
urves



24 Shortest pathswith ‖f ′(s)‖ = 1.In this framework, we 
an show the following property :Proposition I.3.1.1Let x and y ∈ E. Then, the shortest path from x to y is the straight line, i.e.
f ∗ : t 7→ x+ t y−x

‖y−x‖Proof :If f is a 
urve with x and y extremities, we have L(f∗) =
∫ 1

0
‖f∗′(t)‖dt = ‖x − y‖ =

‖
∫ 1

0
f ′(t)dt‖ ≤

∫ 1

0
‖f ′(t)‖dt = L(f)

�The distan
e between two points 
orresponds with Eu
lidean distan
e, i.e.
Us(t) = ‖t − s‖2. In parti
ular, level sets of distan
e map are 
ir
les in 2D,and spheres in 3D (�gure 1.7).

s

Fig. 1.7 � Shortest paths in R
2. Level sets of distan
e map are 
ir
les, andshortest paths are segments.Things are be
oming more interesting when one 
onsider a set S of startingpoints instead of one point. If S is a 
losed set, a 
ompa
ity argument easilyshows the existen
e of a shortest path from S to any point of E. This shortestpath is still a straight line. Figures 1.8 and 1.9 demonstrate this on twoexamples.
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s2s1

Fig. 1.8 � Shortest paths to 2 points s1 and s2. Level sets are represented inbla
k, and shortest paths in red. The blue line 
orrespond to points whi
h areequidistant from s1 and s2, i.e. to the sho
k points of the fronts emanatingfrom s1 and s2.
S

Fig. 1.9 � Shortest paths to a segment. Level sets are represented in bla
k,and shortest paths in red.These results 
an be interpreted in terms of front propagation [188℄ : let us
onsider a starting set S, and a front propagating outside S with a 
onstantspeed 1. The US(t) = α level set 
orresponds to the front position after atime α. A 
lassi
al analogy is the propagation of a forest �re propagating at
onstant speed from an initial hearth [30℄.Appli
ations The interpretation in terms of front is extremely produ
tive.As illustrated �gure 1.8, the meeting points between two fronts 
orrespond



26 Shortest pathsto points that are equidistant from starting points in S. This results 
an begeneralised to an arbitrary number of starting points, whi
h paves the waytoward two appli
ations : the 
al
ulation of Voronoi diagrams [188℄ if S isdis
rete, and skeletization of obje
ts Ω by using S = δΩ [204, 173, 78℄.Another appli
ation is shape o�setting, whi
h 
onsists in �nding level setsof distan
e fun
tions to a given set [188℄ � with appli
ations to growing ofobsta
les in motion planning.Computing the distan
e fun
tion to a 
losed 
urve is also a 
lassi
al step oflevel sets [188℄ implementations � in order to obtained a smooth fun
tionwhi
h zero level set 
orrespond to the 
urve.This formalism was also used in images denoising in 2D or 3D, leading toalgorithms that 
an guarantee topologi
al properties of the obje
t to be de-noised, su
h that homotopy to a sphere [108, 202, 13℄.A list of other appli
ations 
an also be found in [57℄.I.3.1.2 Shortest paths on a subset of R
nFrom a mathemati
al point of view, things be
ome mu
h more 
omplex assoon as the 
onsidered spa
e is a stri
t subset of R

n.As an example, let us 
onsider the plane without the origin. There is noshortest path from (1, 0) to (0, 1) : paths with a length arbitrarily 
lose to 2exist, but no path of length 2(�gure 1.10).
(0, 0)(0, 1) (1, 0)Fig. 1.10 � Existen
e of shortest path is not guaranteed in a subset of theplaneHowever existen
e of shortest paths is guaranteed for several spe
i�
 
ases.Appli
ations. An important appli
ation of this formalism is again motionplanning : this 
al
ulation allow to plan traje
tories of robots in an envi-ronment 
onsisting of obsta
les, or in whi
h some position are forbidden.



I.3 Continuous shortest paths and distan
e maps 27Approximate numeri
al methods exists for general spa
es [99, 96, 68, 69℄.However, it is often advantageous to take advantage of the shape of obsta
lesin order to obtain dedi
ated exa
t algorithms.For example, if the obsta
les are open polygons, it is possible to 
ompute anexa
t solution in polynomial time. Indeed, this problem 
an be redu
es to a
al
ulation of dis
rete shortest path in a visibility graph, or by de
omposingspa
e into 
onne
ted 
ells [138℄. An interesting introdu
tion to this topi
 
anbe found in [113℄.I.3.1.3 Lo
al speedLet E be a subset of R
n, and let us 
onsider a mapping ρ : E → R

+∗ � 
alledpotential over E.Keeping the 
urve de�nition above, we 
an de�ne the length of a 
urve withrespe
t to this potential as
Lρ(f)

def.
=

∫ 1

0

ρ(f(t))‖f ′(t)‖dt (I.3.4)If we parametrise the 
urve by ar
 length, we have
Lρ(f) =

∫ L(f)

0

ρ(f(s))ds (I.3.5)hen
e
Lρ(f)

L(f)
=< ρ >f (I.3.6)where < ρ >f is the average value of ρ along the 
urve. If we interpret Lρ(f)as a travel time to go from f(0) to f(1), L(f) being the Eu
lidean length ofthe 
urve, ρ 
an be seen as the inverse of a lo
al speed of displa
ement.For pra
ti
al purposes, as soon as the 
onsidered potential map is non-trivial,there is no analyti
al form for the shortest paths. Solution will not reside any-more in exa
t algorithms, but on numeri
al methods leading to approximatesolutions � one of these methods will be thoroughly detailed in II.3.However, exa
t algorithms exists in some spe
i�
 
ases, for example if the2D spa
e is partitioned into polygons in whi
h speed is 
onstant [137℄.



28 Shortest pathsFrom a theoreti
al point of view, there is no general guarantee of the existen
eof shortest paths. As an example, let us 
onsider the spa
e E = [0, 1]2 withpotential
ρ

def.
= (x, y)→

{

1 si y < 1/2

2 otherwiseThen, there is no shortest path from (0, 1/2) to (1, 1/2).Nevertheless, we will see an existen
e theorem for shortest paths in a moregeneral framework, whi
h guarantees in parti
ular the existen
e of shortestpaths in [0, 1]n when ρ is 
ontinuous.Appli
ationsThis problem is parti
ularly important from an histori
al point of view ingeometri
al opti
s [110℄. The refra
tive index of a medium is de�ned as theratio between light 
elerity in void over light 
elerity in that medium, i.e.
n

def.
= c

v
. The Fermat's prin
iple enun
iates that the traje
tories followed bylight rays are of extremal duration. If we 
onsider a medium E and an index

n(x) for ea
h point, the duration of light journey along a traje
tory f is thusgiven by
L(f) =

1

c

∫ 1

0

n(f(t))‖f ′(t)‖dt (I.3.7)Shortest paths for this length 
orrespond to possible traje
tories of light rays� and in parti
ular we �nd that lights propagates along straight lines in anhomogeneous medium.The refra
tion laws (or Snell-Des
artes' laws), whi
h des
ribe the behaviourof light rays at the interfa
e between two homogeneous media 
an also beretrieved from this equation (�gure 1.11).This formalism is also applied in image analysis to 
ontour segmentationeither as an alternative to a
tive 
ontours [38℄ or in the framework of seg-mentation by region growing [127, 132, 49℄. In [65, 95℄, 
riteria similar to I.3.6were also analysed and used to perform 
ontour segmentation. The basi
 idea� whi
h we will detail further in 
hapter II � is to 
ompute shortest pathsor distan
e maps in the image plane, setting the potential su
h that shortest
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n2

n1

θ2

θ1

Fig. 1.11 � Left : refra
tion of a light ray at the interfa
e of two homogeneousmedia of index n1 and n2 with n2 < n1. The ray follows the shortest path,and its traje
tory tends to remain longer in the half-plane with smaller index.More pre
isely, we have sin(θ1)n1 = sin(θ2)n2. Right : illustration of thisphenomenon at the interfa
e between air and water � water index beingapproximately 1.3 times bigger. Bottom : distan
e map and shortest pathsin a plane separated in two domains of indi
es 1 and 4 � s being in the areaof bigger index.



30 Shortest pathspaths or level sets of distan
e maps follow interesting 
urves in the image �e.g. blood vessels or obje
ts 
ontours.This kind of methods 
an be paired with watershed algorithms in order tosegment 
luster of obje
ts [144℄.Distan
e map and front 
al
ulation is also used to estimate arrival timesfor seismi
 waves in Earth's mantle [189℄, or to model propagation of ele
tri
signals in the framework of human heart ele
trophysiologi
al modelling [184℄.In [64℄, the same formalism is used in order to 
ompute 
orresponden
esbetween 
urves.Finally, the shape from shading � whi
h 
onsists in re
onstru
ting a tridi-mensional shape from its illumination � needs the use of a formalism 
lose tothe one of distan
e maps [94, 174, 99, 162℄. It is also the 
ase for the problemof re
onstru
ting a depth map from the normals of the surfa
e [81℄.I.3.1.4 AnisotropyHere is another interpretation of shortest paths 
omputation in a spa
e witha potential. Let E and ρ be de�ned as previously. Let us de�ne for all x ∈ Eand for all v ∈ R
n

‖v‖x def.
= ρ(x)‖v‖. (I.3.8)If we 
onsider equation (I.3.4), we have,

Lρ(f) =

∫ 1

0

‖f ′(t)‖f(t)dt (I.3.9)We meet again the de�nition of length proposed in (I.3.2), but in a spa
eequipped with a di�erent metri
.From now, it is easy to generalise these de�nitions to anisotropi
 metri
s,for whi
h the potential depends not only on the lo
ation, but also on theorientation of the 
urve.Let E be a subset of R
n, and let us 
onsider a mapping g : E → S+

n (R),where S+
n (R) is the set of symmetri
 positive de�nite matri
es of size n× n.For every point x ∈ E, it de�nes a metri
 : for all v ∈ R

n, we de�ne
‖v‖g(x)

def.
=
√

vTg(x)v (I.3.10)
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Fig. 1.12 � A path on an ellipsoidThen, we 
an de�ne again the length of a 
urve as follows :
Lg(f)

def.
=

∫ 1

0

‖f ′(t)‖g(f(t))dt (I.3.11)(I.3.8) is therefore a spe
i�
 
ase of this equation when g(x) = ρ(x)2In is anhomothety.Appli
ationsThis formalism was mainly used in medi
al imaging in order to model ele
-trophysiologi
al phenomena [185℄, or to re
onstru
t �bers if di�usion tensorimaging [87, 145℄.I.3.1.5 Shortest paths in a manifoldLet E = V be a manifold [176℄ of dimension k, embedded in R
n for some

n ∈ N.We 
an de�ne the length of a 
urve on this manifold as
L(f)

def.
=

∫ 1

0

‖f ′(t)‖dt (I.3.12)where ‖.‖ denotes the Eu
lidean norm in R
n.Figure 1.12 shows an example of path on an ellipsoid embedded in R

3.Shortest paths problems on manifolds appear in traje
tories issues on thesurfa
e of the Earth � whi
h is of 
apital interest to allow navigators to rea
hone point from another as fast as possible.It is possible to show that shortest paths on this surfa
e are portions of great
ir
les on the sphere (�gure 1.13). This result is known at least from Aristotle.
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Fig. 1.13 � Shortest paths on a sphere are portions of great 
ir
lesA geometri
al demonstration of this result is proposed in [124℄, as well asresults 
on
erning shortest paths on 
ylinder or 
ones.Leonhard Euler [55℄ was the �rst one to ta
kle this problem on a generalsurfa
e. For a 
onvex surfa
e, Euler solves it by noti
ing that a shortest pathbetween two points 
orresponds to a tighten thread on the surfa
e goingthrough those points.The shortest path notion on a manifold is related with the notion of geodesi
.A geodesi
 is de�ned a a 
urve with normal a

eleration on the manifold. Itis possible to show that a shortest path on a manifold is a geodesi
, andthat a geodesi
 is lo
ally a shortest path [66℄. These to notions are generallymixed up in the 
omputer vision 
ommunity, and we will use either of thetwo words in the sequel.Appli
ationsSeveral geometri
 problems are based on shortest paths 
omputations on ma-nifolds : parametrisation of surfa
es [182℄, sampling of surfa
es [155℄, Voronoidiagrams 
al
ulation on surfa
es [188, 99℄.Shortest path 
al
ulation on polyhedra was also studied, an is applied toproblem in motion planning [2, 158, 157℄.I.3.1.6 Shortest paths on a Riemannian manifoldLet V be a manifold of dimension k embedded in R
n for some n ∈ N. Forall x ∈ V , let us denote by Tx(V ) the tangent spa
e of V at x. It is a ve
tor



I.3 Continuous shortest paths and distan
e maps 33spa
e of dimension k su
h that for any 
urve f on the manifold, and for allpoint f(t) ∈ V on the 
urve, f ′(t) ∈ Tf(t)(V ).A Riemannian manifold (V, g) is de�ned as a manifold V su
h that for allpoint x ∈ V , Tx(V ) is equipped with a symmetri
 positive de�nite bilinearform g(x) : Tx(V ) × Tx(V ) → R
+ 
alled potential. Usually, a 
ontinuity
onstraint is imposed for g. Ex
ellent introdu
tion to the study of Rieman-nian manifolds 
an be found in [116℄ and [66℄.

‖v‖x def.
=
√

g(x)(v,v) (I.3.13)We 
an now de�ne the length of a 
urve on V by
Lg(f)

def.
=

∫ 1

0

‖f ′(t)‖f(t)dt (I.3.14)
g 
an be interpreted as the inverse of a speed tensor.Therefore, shortest paths on manifolds is a spe
i�
 
ase of this framework,in whi
h g(x)(v,v) 
orresponds with the Eu
lidean norm of the embeddingspa
e.Appli
ations When the potential is isotropi
, this formalism 
an be usedto segment targeted 
urves on surfa
es. In [203, 10℄, the authors proposed touse it to segment sul
i on 
orti
al surfa
e. It was also used to segment surfa
esin tridimensional images � viewed as an union of shortest paths belonging tothat surfa
e [6, 7℄.I.3.2 Theoreti
al aspe
tsIt is possible to prove existen
e of geodesi
s and to demonstrate propertiesof the distan
e maps in the most general 
ase we have mentioned. Completeproofs 
ome under non-trivial mathemati
s, and will not be detailed here.However, we will give intuitive proofs in a few spe
i�
 
ases.



34 Shortest pathsI.3.2.1 Distan
eProposition I.3.2.1Let (V, g) be a 
onne
ted 
omplete Riemannian manifold, equipped with a
ontinuous metri
. We de�ne the length L of a 
urve as previously.Then, the mapping d indu
ed by L (I.1.1) is a distan
e fun
tion.Proof :We present a sket
h of proof. A 
omplete one 
an be found in [66℄.Triangular inequality holds from I.1.0.1.Symmetry is derived from the possibility of travelling on the 
urve in both dire
tions : if
f is a path from a to b, then t→ f(1− t) is a path from b to a of same length. Symmetryis obtained by 
onsidering the in�mum of length of all paths from a to b.The de�nite 
hara
ter is more di�
ult to show. Let us 
onsider two distin
t points sand t. We will prove that d(s, t) > 0. Let us embed the manifold in some spa
e R

nand let us 
onsider the 
ompa
t set Bs
def.
= V ∩ B(s, ‖s−t‖

2 ). By 
ontinuity of the metri
,there exist ǫ ∈ R su
h that for all x ∈ Bs and for all v ∈ Tx(V ) g(x)(v, v) > ǫ‖v‖.Let us 
onsider a path from s to t, and denote t0
def.
= inf

t∈[0,1]
{t ∈ [0, 1] | f(t) /∈ Bs}.Then, Lρ(f) ≥

∫ t0
0
‖f ′(t)‖f(t)dt ≥ ǫ

∫ t0
0
‖f ′(t)‖ ≥ ǫ|

∫ t0
0

f ′(t)| = ǫ‖s−t‖
2 . Therefore, we have

d(s, t) ≥ ǫ‖s−t‖
2 > 0

�

I.3.2.2 Geodesi
sThe Hopf-Rinow theorem [83℄ guarantees the existen
e of geodesi
s for alarge 
lass of Riemannian manifolds.Theorem I.3.2.2 (Hopf-Rinow)For any 
omplete 
onne
ted Riemannian manifold, and for any 
ouple ofpoints (s, t) of the manifold, there exists a geodesi
 of minimal length between
s and t.
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e maps 35I.3.2.3 Distan
e map propertiesRe
all that the distan
e map U(S) to a starting set is de�ned as U(S, t)
def.
=

d(S, {t}) for all t ∈ V . We 
an 
he
k easily thatProposition I.3.2.3Let (V, g) be a 
omplete 
onne
ted Riemannian manifold, equipped with a
ontinuous metri
. Let S ⊂ V be a 
ompa
t set.Then U(S) is 
ontinuous.In parti
ular, the distan
e map to a single point is 
ontinuous.However, even in the simplest 
ases, the distan
e map if not di�erentiable.As an example, in the 
ase of distan
e map to a point in R
2 (�gure 1.7),

Us is not di�erentiable at point s. In the 
ase of distan
e map to two points(�gure 1.8), the distan
e map is also not di�erentiable at points whi
h areequidistant from the two starting points.Yet, we have the following property.Proposition I.3.2.4If Us is di�erentiable at t, then |∇tUs|[g(t)]−1 = 1.Proof :We provide a proof when E = R
n, equipped with a potential ρ. It 
an be extended to anyRiemannian spa
e, but this requires te
hni
al tools we will not develop here.If Us is di�erentiable at t, we 
an write

Us(t + dt) = Us(t) +∇tUs.dt + o(|dt|).Furthermore, Us(t + dt) being the length of the shortest path from s to t + dt, and thenorm being 
ontinuous, we have
Us(t + dt) ≤ Us(t) + ρ(t)|dt|+ o(|dt|).In parti
ular, if we set dt = ǫ∇tUs, and de
rease ǫ toward 0, we have

|∇tUs| ≤ ρ(t)Now let us 
onsider a shortest path γ from s to t. We set dt = γ(1)− γ(1− ǫ).Let us de�ne U(x)
def.
= Us(γ(x)). We thus have U ′(x) = ∇γ(x)Usγ′(x), and x = 1, U ′(1) =

∇tUs.γ′(1) ≤ |∇tUs||γ′(1)|.By the way, we have
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U(1)− U(1− ǫ) = ǫ|γ′(t)|ρ(t) + o(ǫ)hen
e

U ′(1) = |γ′(t)|ρ(t)and
|∇tUs|t ≥ ρ(t)hen
e the result.On the way, we also proved that γ′(t) and ∇tUs are 
ollinear.

�De�nition I.3.2.1We 
all Eikonal equation the following partial derivative equation :
‖∇xUS‖g−1(x) = 1 with ∀s ∈ S US(s) = 0 (I.3.15)The previous proposition enun
iates that if the distan
e map is di�erentiableat some point, it is solution of the Eikonal equation at that point. It wouldbe interesting to obtain a 
onverse of this results, whi
h would 
hara
terise

Us globally as a solution of Eikonal equation. This is a tough problem, sin
e,as we saw, Us is not di�erentiable at any point.[43℄ introdu
ed the notion of vis
osity solution for a large 
lass of partialdi�erential equations, allowing to 
ir
umvent this issue (�gure 1.14).De�nition I.3.2.2We 
all u a vis
osity solution of the Eikonal equation if and only if for anymapping ϕ ∈ C1(V ) and for all x0 ∈ V lo
al minimum of u− ϕ we have
‖∇x0ϕ‖g−1(x0) = 1This de�nition disposes of the di�erentiability 
onstraint on u. Some physi
alinsight of this notion are detailed in [186℄.A spe
i�
 
ase of results proved in [43℄ 
an be enun
iated as followTheorem I.3.2.5Let (V, g) be a Riemannian manifold, and S ⊂ V a 
ompa
t set.Then, US is the unique vis
osity solution of the Eikonal equation (I.3.15).
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u

ϕ

x0Fig. 1.14 � Illustration of the vis
osity solution de�nition in dimension 1. uis the distan
e fun
tion to two initial points. ϕ is a C1(R) mapping. x0 is alo
al minimum u− ϕ. Then the equality |∇x0ϕ| = 1 holds.The following theorem also holds.Theorem I.3.2.6Let (V, g) be a Riemannian manifold, and s, t ∈ V .Let γ be a geodesi
 between s and t. Then, up to parametrisation, γ is solutionof the following di�erential equation
γ′(t) = − g(γ(t))−1∇γ(t)Us

‖g(γ(t))−1∇γ(t)Us‖
with γ(0) = t. (I.3.16)Proof :In the 
ase of R

n equipped with a potential, we must show that
γ′(t) = − ∇γ(t)Us‖∇γ(t)Us‖

with γ(0) = t. (I.3.17)The proof is immediately derived from 
ollinearity of γ′(t) and ∇γ(t)Us we observed duringthe proof of I.3.2.4.This result 
an be generalised to Riemannian manifolds.
�In the 
ase of R

n equipped with a potential, this implies the orthogonalitybetween shortest paths and level sets of distan
e map (�gures 1.7 1.8 1.9).The last two results are extremely important for pra
ti
al 
omputation ofshortest paths and distan
e maps. Computing a distan
e map is redu
ed tothe problem of approximating the solution of a partial di�erential equation(we will detail a method to do so in se
tion II.3), and 
omputing a shortest



38 Shortest pathspath boils down to performing a gradient des
ent on the obtained map � ormore pre
isely a des
ent along the 
hara
teristi
s of the solution [56℄ � whi
haligns with with gradient dire
tion in the 
ase of an isotropi
 potential.I.4 Con
lusionShortest paths naturally appear in the modelling of several problems, eitherin the dis
rete 
ase (shortest paths in a graph) or in the 
ontinuous one(shortest path in R
n or in a manifold). The expli
it 
al
ulation of shortestpaths is thus of primary interest for the resolution of numerous problems.The next 
hapter details some methods allowing to 
ompute exa
t or ap-proximate solutions to these problems.



Chapitre IIShortest paths 
omputation
Introdu
tionThis 
hapter is an attempt to propose a 
lear presentation of algorithms to
ompute shortest paths � in parti
ular Fast-Mar
hing.We will present Dijkstra algorithm for 
omputation of shortest paths ongraphs (se
tion II.1). Then we will show an fruitless attempt to use thisalgorithm in a 
ontinuous framework (se
tion II.2). We will thus presentthe state-of-the art solution to this problem � i.e. Fast-Mar
hing. . Se
tionII.3 will 
onsist in a full exposition of the method � our formalism beingdi�erent than the 
lassi
al one, whi
h will allow both to have a point-of-view uni�ed with Dijkstra algorithm, and to perform easy generalisations. Aproof of 
onvergen
e will be proposed in this 
ase. We will therefore showhow to extend this algorithm to any dimension, and to anisotropi
 potentialswith prin
ipal 
omponents aligned with the grid. Finally, in se
tion II.4 wewill detail the algorithm and give a proof in the most general framework �i.e. shortest paths on Riemannian spa
es. This presentation, while keeping ageometri
al point-of-view, is a generalisation of results indi
ated in [186℄ and[30℄.ContentsII.1 Dis
rete shortest paths 
omputation . . . . . . . . 40II.1.1 Dijkstra algorithm . . . . . . . . . . . . . . . . . . 41II.2 From dis
rete to 
ontinuous � a �rst attempt . . . 4739



40 Shortest paths 
omputationII.3 Fast-Mar
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heme . . . . . . . . . . . . . . . . . . . . 86II.4.3 Convergen
e proof . . . . . . . . . . . . . . . . . . 86II.5 Numeri
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II.1 Dis
rete shortest paths 
omputationDepending on the targeted appli
ation, numerous methods exist in order to
ompute dis
rete shortest paths.We will restri
t ourselves to the the problem of 
omputing distan
e maps andshortest paths from a �xed set of initial verti
es (noti
e that it is possible to
ompute distan
es between any 
ouple of points using algorithms su
h thatFloyd-Warshall and Johnson [181℄ .)If negative values are permitted in the graph, there is no guarantee of theexisten
e of shortest paths between two verti
es (�gure 1.2). In this 
ontext,�nding a shortest path between to verti
es is a NP-
omplete problem [92℄.When the graph does not 
ontain any loop of negative length, one 
an provethat shortest paths exist, and they 
an be found using polynomial algorithmssu
h that Bellman-Ford algorithm [123, 1, 139℄.



II.1 Dis
rete shortest paths 
omputation 41In the sequel, we will only 
onsider graphs with positive weights. In this 
ase,our problem 
an be solved in polynomial time by using Dijkstra algorithm �whi
h we are going to detail.Noti
e also that if all weights in the graph are equal to 1, dedi
ate algorithmsexists to 
ompute shortest paths[19℄.II.1.1 Dijkstra algorithmIn this se
tion, we will fo
us on methods to 
ompute distan
e maps fromone given vertex s � along with shortest paths from any other vertex to
s. In the sequel, a graph will be denoted as (S,A), where S represents theverti
es, and A the edges. Furthermore we will denote n def.

= |S| and m def.
= |A|.

w : A → R
+ is a weight de�ned on the edges of the graph. N (s) ⊂ Srepresents the neighbors of s in the graph, and p

def.
= max

s∈S
{|N (s)|} is themaximal 
onne
tivity for a vertex.We have the following fundamental property for the distan
e map Us from avertex s on a graph.Proposition II.1.1.1

Us(t) = min
v∈N (t)

Us(v) + w(v, t)Proof :For any neighbor v of t, we have Us(t) ≤ Us(v) + w(v, t).Furthermore, let us 
onsider a shortest path from s to t, namely (s, . . . u, (u, t), t) (
f.I.1.0.2). Then, the sub-path (s, . . . u) is a shortest path from s to u. We then have Us(u) =

l(s, . . . u), and Us(t) = l((s, . . . u, (u, t), t)) = Us(u) + w(u, t).
�The proof also shows that if (s, . . . u, (u, t), t) is a shortest path, the minimumin (II.1.1.1) is rea
hed for v = u.Some vertex s being 
hosen, Dijkstra algorithm [54, 119℄ allows to 
omputethe distan
e map Us as long as a shortest paths tree in O(n(log(n)+p)) time.At any stage, the algorithm keeps up an estimate d of Us. It is based on alo
al update routine derived from II.1.1.1. This routine allows to estimate dfor a vertex t, knowing values of d for its neighbors. Furthermore, it updatesthe father p(t) of t in the shortest paths tree.
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omputationAlgorithm 1 update(t)Input: A vertex t.for all v ∈ N (t) doif d(v) + w((v, t)) < d(t) then
d(t)← d(v) + w((v, t))

p(t)← vend ifend forDijkstra algorithm travels all over the graph, and sequentially performs su
hupdate steps. The order in whi
h to perform these operations is 
riti
al.A �rst attempt is to iteratively perform them on all the verti
es. One getsthe algorithm des
ribed in 2.Algorithm 2 Iterative algorithm for shortest paths 
omputationsInput: A graph (S,A), s ∈ SOutput: ∀t ∈ V d(t) = Us(t)Initialization:Set d(s) = 0 and d(t) = +∞ for all t 6= s.
p(s)← 0while 
onvergen
e is not rea
hed dofor all t ∈ S doupdate(t)end forend whileIt is possible to show that n iterations are su�
ient to rea
h 
onvergen
e.This algorithm thus runs in O(n2p) time.However, it is possible to improve this 
omplexity. Re�ning II.1.1.1, we ob-tain :Proposition II.1.1.2
Us(t) = min

v∈N (t)
Us(v)<Us(t)

Us(v) + w(v, t)This means that Us value for a given vertex only depends on values of neigh-



II.1 Dis
rete shortest paths 
omputation 43boring verti
es with lower values � in parti
ular, the update routine is per-forming useless operations.This property � whi
h introdu
es a 
ausality or upwinding notion in Us �allows one to design a new dynami
-programming-like algorithm to 
omputeshortest paths : one 
an 
ompute Us for verti
es � 
lose� from s, and thenextend the 
omputation to further verti
es. In the 
ase when weights are all
1 in the graph, this 
orresponds to a breadth �rst exploration.Three disjoint sets of verti
es are kept up :
• A (alive) : the set of verti
es for whi
h d = Us.
• T (trial) : the set of verti
es for whi
h an estimation d of Us is available �i.e. points being 
onsidered.
• F (far) : the set of verti
es for whi
h no estimation d of Us is availableAt every iteration, the algorithm sele
ts a vertex t ∈ T with minimal d(t)estimation. One 
an show that d(t) = Us(t) for su
h a vertex. This vertex istransferred in A. Its neighbors are transferred in T , and their estimated dis-tan
e is updated by using the value found for d The algorithm is synthesisedin 3 and 4.Algorithm 3 update(v,t)Input: A vertex v. A neighboring vertex t.if d(t) + w((t, v)) < d(v) then

d(v)← d(t) + w((t, v))

p(v)← tend ifFigure 2.1 shows an iteration of the algorithm. At anytime during the 
om-putation, T 
an be seen as a front propagating from s.Dijkstra algorithm 
an be easily generalised to a set of starting verti
es S :one just need to repla
e T ← {s} with T ← S, and by setting ∀s ∈ S

d(s) = 0 during the initialisation.Proof of 
orre
tness Let us prove the 
orre
tness of Dijkstra algorithm.We want to prove that for any vertex t, we have d(t) = Us(t) after exe
utionof the algorithm.
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omputationAlgorithm 4 Dijkstra algorithmInput: A graph (S,A), s ∈ SOutput: ∀t ∈ V d(t) = Us(t)Initialization:Set d(s) = 0 and d(t) = +∞ for all t 6= s. Set A = ∅, T = {s} and
F = V \{s}.while there exists t ∈ T doSele
t t ∈ T su
h d(t) is minimal.
T ← T \{t}, A ← A∪ {t}for all v ∈ N (t)\A doif v ∈ F then
F ← F\{v}, T ← T ∪ {v}end ifupdate(v, t)end forend while
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Fig. 2.1 � One iteration of Dijkstra algorithm. Bla
k verti
es : A. Red ver-ti
es : T . Green verti
es : F . Vertex of T with minimal weight (in bold) issele
ted, and transferred to A. The vertex under it is transferred from F to
T .



II.1 Dis
rete shortest paths 
omputation 45At any time, and for every vertex t, d(t) ≥ Us(t) : indeed (s, . . . p(t), (p(t), t), t)is a path from s de t, and its length is d(t).We are going to re
ursively show that at any time ∀t ∈ A d(t) = Us(t).Noti
e that this property holds after initialisation.Let us 
onsider the instant when a verti
es of T of minimal distan
e is 
hosen.let us denote by t0 ∈ T ∪ F a vertex minimising Us(t). We have
Us(t0) = min

v∈N (t0)
Us(v)<Us(t0)

Us(v) + w(v, t0)Furthermore, if v /∈ A, then Us(v) ≥ Us(t0). Therefore,
Us(t0) ≥ min

v∈N (t)∩A
Us(v) + w(v, t0)Let us 
onsider all the update operation that o

urred to t0 until now. Forall neighbors v of t0 in A, the operation d(t0)← min{d(t0), d(v)+w((v, t0))}took pla
e when v was transferred in A.We thus have

d(t0) = min
v∈N (t)∩A

d(v) + w((v, t0)) = min
v∈A∪N (t)

Us(v) + w((v, t0)).
d(t0) = Us(t0) thus holds. Furthermore, for all v in T , d(t0) = Us(t0) ≤
Us(v) ≤ d(v).In parti
ular, d(t0) ≤ d(v). The inequality is stri
t, unless if Us(t0) = Us(v).We thus 
an assert that the set of verti
es of T of minimal evaluated distan
e
oin
ides with the set of verti
es of T of minimal a
tual distan
e.The 
hosen vertex t is therefore a vertex with minimal distan
e, and we have
d(t) = Us(t), whi
h 
on
ludes the proof.Complexity Every iteration is of O(p) 
omplexity. If an unstru
tured setis used to implement T , the sele
tion of the minimal element in T runs inlinear time with respe
t to the size of T . n iterations being ne
essary, theoverall time 
omplexity of Dijkstra algorithm is thus de O(n(n+p)) ⊂ O(n2).Many implementations were proposed to de
rease this 
omplexity. In parti-
ular, it is interesting to 
onsider T as a priority queue. It 
an thus be im-plemented as a heap[217, 62℄. A heap is an ordered data stru
ture in whi
hinsertion and update of an element runs in logarithmi
 time, while a

ess tothe smallest element runs in 
onstant time. The 
omplexity of the algorithmtherefore be
omes O(n(log(n) + p)).
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omputationImproving the running time Other improvements 
an be made to therunning time of the algorithm.
• If one is only interested in �nding the shortest path between two verti
es
s and t, it is possible to stop the algorithm as soon as t is transferred to A� whi
h 
an bring a substantial gain of time by avoiding the explorationof a large part of the graph.
• If a prior for distan
e map is available, it is possible to use meta-heuristi
ssu
h as A∗ algorithm, whi
h allows to guide the exploration of the graphin a supposedly �good� dire
tion [150℄.
• When no pre
ise prior is available, if one is only interested in qui
kly �ndingan approximation of shortest paths, it is possible to use Best First Sear
h-like algorithms, whi
h guide the exploration in some dire
tion heuristi
ally� and stops as soon as the target point t is rea
hed [150℄.



II.2 From dis
rete to 
ontinuous � a �rst attempt 47II.2 From dis
rete to 
ontinuous � a �rst at-temptLet us 
onsider the problem des
ribed in I.3.1.3 for Ω = [−1, 1]×[−1, 1] ⊂ R
2with a potential P . In this se
tion, we present a �rst attempt to solve adis
retized version of this problem.Let us dis
retize Ω with a regular grid with step h = 1/N : { i

N
, j

N
| −N ≤ i, j ≤ N

}.We build a graph whi
h verti
es 
orrespond to the grid points � and whi
hedges link all points in a 4-neighborhood (�gure 2.2).

Fig. 2.2 � Lo
al neighborhood system with 4 neighbors : the 4 red verti
esare neighbors of the blue vertex.Then we dis
retize the Eikonal Equation
‖∇U‖ = P (II.2.1)along the edges.Let us 
onsider two adja
ent points x and y. We then have :

∣
∣
∣
∣

U(x)− U(y)

h

∣
∣
∣
∣
≈ P (x) (II.2.2)
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omputationand
U(x) ≈ U(y) + hP (x) or U(x) ≈ U(y)− hP (x) (II.2.3)In view of updating U(x) from U(y), we have the 
onstraint U(x) > U(y),and with thus sele
t the �rst equation.Let us de�ne the weight of an edge (x, y) as w(x, y)

def.
= hP (x). The obtainedgraph is then �
ompatible� with the 
ontinuous problem, in the sense thatthe length of a path in the graph is equal to the length of the 
orrespondinggeometri
 path in the plane.Therefore, we 
an apply Dijkstra algorithm to this graph in order to 
omputedistan
e maps and shortest paths (a similar formalism is proposed in [98, 101℄).When the potential is uniform, many shortest paths exist between two dif-ferent points, and they 
an be distant from the a
tual straight line shortestpath (�gure 2.3).

Fig. 2.3 � Shortest paths obtained by Dijkstra algorithm with a 4-neighborssystem, for a uniform potential. The obtained shortest paths (in blue) bet-ween the two blue points are distant from the a
tual shortest path (red).Figure 2.4 shows the result obtained by this method for a uniform potentialover a bigger grid, with s = (0, 0).Proposition II.2.0.3After the exe
ution of Dijkstra algorithm for a dis
retization step N , , theapproximation dN of Us is equal to dN

(
i
N
, j

N

)
= |i|

N
+ |j|

N
.In parti
ular, as the dis
retization is re�ned, if we denote for all (x, y) ∈

[−1, 1]2 dN(x, y)
def.
= dN

(
⌊Nx⌋

N
, ⌊Ny⌋

N

), we have lim
N→+∞

dN(x, y) = |x| + |y| =
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Fig. 2.4 � Results obtained by Dijkstra algorithm with a 4-neighbors systemfor a uniform potential over a 100 × 100 grid, starting point s being at the
entre. Left : distan
e map (Us). Right : distan
e map (Us) along with levelsets (red), and some shortest paths from di�erent points to s (
yan)
‖(x, y)‖1.The traje
tories are 
onstrained to the axis dire
tions � and thus this methodsoutputs an approximation of Manhattan distan
e from s (t → ‖s − t‖1)instead of the 
orre
t Us = t→ ‖s− t‖2 distan
e.It is possible to 
onsider bigger neighborhood-systems, so that traje
toriesshould follow more pre
ise dire
tions. For example, one 
an 
onsider 8 or 16neighbors for a generi
 point (�g 2.5).

Fig. 2.5 � Lo
al neighborhood-systems with 8 (left) and 16 (right) neighbors.For both �gures, red verti
es are neighbors of the blue one.At the sake of an in
rease of running time, ont 
an thus improve the quality
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omputationof 
omputed solutions (�g 2.6) � in parti
ular when the neighborhood-systemin
reases, level-sets get 
loser to 
ir
les, and the distan
e map gets 
loser fromits theoreti
al value. Figure 2.7 also shows some results for a plane separatedin two half-planes with 
onstant potentials (1 and 4). The pre
ision of theresults in
rease while the neighborhood-system be
ome more important, butthe paths 
oming from the lower half-plane are still 
onverging near theinterfa
e, whi
h is 
ontradi
tory with the Snell-Des
artes law.Figures 2.14 (top) and 2.15 (bottom) show errors obtained by the algorithmwith di�erent neighboring-systems for a uniform potential. Quality of theresults improves as expe
ted. Still, for all the 
onsidered systems, the tra-je
tories are still 
onstrained to follow a dis
rete set of dire
tions, and thealgorithm remains unable to evaluate distan
es 
orre
tly on other dire
tions,even in re�ning the dis
retization.Furthermore, if one whi
h to in
rease the number of possible dire
tion, oneneed to 
onsider from ea
h point neighbors further away. If the potential ifvarying qui
kly, this will result in a loss of pre
ision � the neighborhood-system establishes links between spatially far away points, potentially losingpre
ise value of potential between these two points.
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Fig. 2.6 � Distan
e maps, level sets and shortest paths for a uniform poten-tial. Top : 4 neighbors. Middle : 8 neighbors. Bottom : 16 neighbors.
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Fig. 2.7 � Distan
e maps, level sets and shortest paths for a plane separa-ted in two half-planes with 
onstant potentials (1 and 4). Top : 4 neighbors.Middle : 8 neighbors. Bottom Noti
e that even for the 16 neighbors expe-riment, traje
tories in the bottom half-plane are still far away from the truesolution.



II.3 Fast-Mar
hing on a regular grid 53II.3 Fast-Mar
hing on a regular gridThe solution proposed in the last se
tion is not fully satisfa
tory. Anothermethod, based on the a

eleration of numeri
al s
hemes � through ideas ins-pired from Dijkstra algorithm � was proposed in [187℄. This approa
h �
alled Fast-Mar
hing � is a 
ontinuous version of the algorithms proposed inthe previous se
tions. It was initially written for the 2D 
ase. The generalroad map for Fast-Mar
hing algorithm is basi
ally the same than for Dijkstraalgorithm. A more pre
ise update step allows to relax the 
onstraint of pro-pagation in a �nite number of dire
tions. In this se
tion, we will present thealgorithm on a regular grid in 2D. The numeri
al s
heme is equivalent to theone proposed in [187℄ � despite a di�erent shape � whi
h will allow a dire
tgeneralisation to more 
omplex 
ases. We will propose a 
onvergen
e prooffor our s
heme � whi
h will be easily extensible to nD and to anisotropi
potentials.II.3.1 Update stepThe whole idea behind Fast-Mar
hing update step is to bypass the 
onstraintof propagation along the edges (�gure 2.8.)
Fig. 2.8 � From Dijkstra to Fast-Mar
hingLet us 
onsider E = [−1, 1]2, dis
retized with a regular square grid withstep h, and a point (i, j) on the dis
retization. Its 4 neighbors are (i+ h, j),

(i − h, j), (i, j + h) and (i, j − h). These �ve points de�ne four triangles
{S(2)

i }i∈[1..4] and four edges {S(1)
i }i∈[1..4] (�gure 2.9).It is possible to dis
retize the Eikonal equation on ea
h of the triangles.As an example, on S(2)

1 , we obtain



54 Shortest paths 
omputation
S
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(i− h, j)

(i, j − h)

S
(2)
2

(i, j)

S
(2)
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(2)
4

(i, j + h)

(i+ h, j)

Fig. 2.9 � Neighborhood system indu
ed by 4 neighbors in 2D.
∇U ≈

(
U(i+ h, j)− U(i, j)

h
,
U(i, j + h)− U(i, j)

h

) (II.3.1)and
(U(i+ h, j)− U(i, j))2 + (U(i, j + h)− U(i, j))2 = h2P (i, j)2 (II.3.2)denoting u def.

= U(i, j), we have
2u2−2u(U(i+h, j)+U(i, j+h))+U(i+h, j)2 +U(i, j+h)2−h2P (i, j)2 = 0(II.3.3)The quadrati
 equation has 0, 1 or 2 solutions depending on the sign of
∆′ def.

= 2h2P (i, j)2 − (U(i+ h, j)− U(i, j + h))2.Furthermore, we wish to have u ≥ U(i+ h, j) and u ≥ U(i, j + h). The sumof the roots of the equation being U(i+ h, j) + U(i, j + h), only the biggestroot u2 
an satisfy this 
ondition. We have
u2 =

U(i+ h, j) + U(i, j + h) +
√

∆′

2
(II.3.4)A simple 
al
ulation shows that a su�
ient 
ondition so that u2 ≥ max{U(i+

h, j), U(i, j + h)} is
(U(i+ h, j)− U(i, j + h))2 ≤ h2P (i, j)2. (II.3.5)
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hing on a regular grid 55Noti
e that this 
ondition is stronger than the positivity 
ondition of ∆′.To sum up, we de�ne :
θ

(2)
P : (x, y) ∈ R

2 7→
{

x+y+
√

2P 2−(x−y)2

2
if (x− y)2 ≤ P 2

+∞ otherwise (II.3.6)
s
(2)
1

def.
= θ

(2)
hP (i,j)(U(i+ h, j), U(i, j + h)) (II.3.7)In other words, s(2)

1 is +∞ or a value :
• whi
h makes the Eikonal equation true in the triangle,
• whi
h is superior to the values of other verti
es of the triangles.Similarly, let us de�ne s(2)

2 , s
(2)
3 and s

(2)
4 the solutions in the triangles S(2)

2 ,
S

(2)
3 and S(2)

4 :
s
(2)
2

def.
= θ

(2)
hP (i,j)(U(i− h, j), U(i, j + h))

s
(2)
3

def.
= θ

(2)
hP (i,j)(U(i− h, j), U(i, j − h))

s
(2)
4

def.
= θ

(2)
hP (i,j)(U(i+ h, j), U(i, j − h))

(II.3.8)Let us also de�ne {s(1)
i }i∈[1..4] as the update values obtained by dis
retizingthe Eikonal equation along the edges {S(1)

i }i∈[1..4] :
θ

(1)
P : x ∈ R 7→ x+ P (II.3.9)

s
(1)
1

def.
= θ

(1)
hP (i,j)(U(i+ h, j))

s
(1)
2

def.
= θ

(1)
hP (i,j)(U(i, j + h))

s
(1)
3

def.
= θ

(1)
hP (i,j)(U(i− h, j))

s
(1)
4

def.
= θ

(1)
hP (i,j)(U(i, j − h))

(II.3.10)Let us de�ne
θP : (a, b, c, d) ∈ R

4 →
min{θ(2)

P (a, b), θ
(2)
P (b, c), θ

(2)
P (c, d), θ

(2)
P (d, a), θ

(1)
P (a), θ

(1)
P (b), θ

(1)
P (c), θ

(1)
P (d)}(II.3.11)



56 Shortest paths 
omputationThe update s
heme of Fast-Mar
hing algorithm 
onsists in 
omputing thesolutions of Eikonal equation in all triangles and edges, and to sele
t theminimal value among them.
U(i, j)← min

i=1..2
j=1..4

{s(i)
j } = θhP(i,j)

(U(i+ h, j), U(i, j + h), U(i− h, j), U(i, j − h))(II.3.12)Noti
e that the update s
heme in Dijkstra algorithm is
U(i, j)← min

j=1..4
{s(1)

j } (II.3.13)Let us re
all that in Dijkstra algorithm, the update step 
ould be re�nedby 
onsidering only neighbors with a value smaller than the 
urrent point(property II.1.1.2).The same reasoning holds in the 
urrent situation : indeed, for all j ∈ [1..4],if we denote by S(1)
j the edge ((i, j), A), s(1)

j > U(A), and if we denote by S(2)
jthe triangle ((i, j), A,B), s(1)

j > max{U(A), U(B)}. An edge or a triangle
annot be taken into a

ount in the update if the value of one of its verti
esis stri
tly superior to the 
urrent value of (i, j).let us denote by
S−(i, j)the set of edges or triangles whi
h are adja
ent to (i, j) and su
h that all itsverti
es distin
t from (i, j) have a value inferior to U(i, j).Then, the update step is equivalent to :

U(i, j)← min
S

(i)
j ∈S−(i,j)

{s(i)
j } (II.3.14)This formulation, in addition to allowing to save up 
omputations, will alsobe useful in the 
onvergen
e proof.This update state 
an be performed iteratively for all the dis
retizationpoints. However � as for Dijkstra algorithm � one 
an use 
ausality in orderto 
hoose a more 
lever order.Fast-Mar
hing algorithm is synthesised on �gure 5.As in Dijkstra algorithm 
ase, in order to avoid unne
essary operations, theupdate step 
an be performed by taking into a

ount only triangles/edges
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hing on a regular grid 57Algorithm 5 Fast-Mar
hingInput: { i
N
, j

N
| −N ≤ i, j ≤ N

} as a dis
retization of [0, 1]2. s ∈ S.Output: ∀t ∈ V d(t) = Us(t)Initialization:Set d(s) = 0 and d(t) = +∞ for all t 6= s. Set A = ∅, T = {s} and
F = V \{s}.while there exists t ∈ T doSele
t t ∈ T su
h that d(t) is minimal.
T ← T\{t}, A← A ∪ {t}for all v ∈ N (t)\A doif v ∈ F then

F ← F\{v}, T ← T ∪ {v}end ifupdate v using equation (II.3.14).end forend whilethat 
ontains the 
urrent point � and in the 
ase of triangles, su
h that theremaining point belongs to A.Complexity. The analysis performed for Dijkstra algorithm holds. It showsthat the 
omplexity of this algorithm is O(Nlog(N)), where N is the numberof points explored by the algorithm.II.3.2 Convergen
e proofIn this se
tion, we will prove the 
onvergen
e of this numeri
al s
heme, i.e.prove that when the dis
retization step h tends toward 0, the solution 
ompu-ted by the algorithm tends toward the vis
osity solution of Eikonal equation.Noti
e that another 
onvergen
e proof is given in [174℄ � the authors areusing a di�erent but equivalent formulation for the update step. The bene�tof our framework resides in the ease of generalisation of both the s
heme andthe 
onvergen
e proof to more 
omplex 
ases.Let us de�ne
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omputation
S(h, (x, y), t, U)

def.
=

min
i=1..2
j=1..4

{s(i)
j } − t

h

=
θhP(x,y)

(U(x+ h, y), U(x, y + h), U(x− h, y), U(x, y − h))− t
h

(II.3.15)The update s
heme (II.3.12) 
an thus be rewritten :
S(h, (i, j), U(i, j), U) = 0 (II.3.16)The 
omplete 
onvergen
e proof lies on two steps.

• Proving that any �x-point of the dis
rete problem II.3.12 tend toward thevis
osity solution of (II.2.1) � whi
h is mainly a spe
i�
 
ase of a generalproof made in [9℄ and taken up by [174℄.The proof is based on three 
hara
teristi
s of the s
heme ([9℄) :� monotony of the update s
heme II.3.12, whi
h 
an be enun
iated asfollows :(II.3.16) is monotonous if and only if
U ≤ V ⇒ S(h, (i, j), t, U) ≤ S(h, (i, j), t, V )� stability of II.3.12 : the s
heme is stable if the solution to the dis
reteproblem exists, and is bounded with a bound independent from thedis
retization step.� 
onsisten
y of II.3.12 � whi
h denote the fa
t that II.3.12 is a dis
reti-zation of Eikonal equation or an equivalent equation. In our 
ase, this
an be written

lim
h→0

(x′,y′)→(x,y)
ξ→0

S(h, (x′, y′), ϕ(x′, y′) + ξ, ϕ+ ξ) = H(∇ϕ, (x, y))for every fun
tion ϕ ∈ C∞ bounded over E, and where
H(∇ϕ, (x, y)) = 0is equivalent to Eikonal equation (H is 
alled Hamiltonian asso
iatedwith the Eikonal equation).
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• Prove that the ordering of updates allows to 
ompute su
h a �x-point. Thereasoning is somewhat similar to the one made during Dijkstra algorithmproof. Noti
e that the �rst demonstration of this fa
t was given in [187℄,yet with a di�erent proof.Some results. Some preliminary results will be needed during the 
onver-gen
e proof.Let us de�ne ΩP = {(x, y) ∈ R

2 | (x− y)2 ≤ P 2}, Ω+
P = {(x, y) ∈ R

+2 | x ≥
y et (x− y)2 ≤ P 2} and Ω−

P = {(x, y) ∈ R
+2 | x ≤ y et (x− y)2 ≤ P 2}.Lemma II.3.2.1 Properties of θ(2)

PLet (x, y) ∈ ΩP .
• θ(2)

P is 
ontinuous over ΩP .
• if (x, y) ∈ ΩP , a 7→ θ

(2)
P (x+ a, y + a) is non-de
reasing over R

+.
• if (x, y) ∈ ΩP , a 7→ θ

(2)
P (x+ a, y) is non-de
reasing over R

+.
• if (x, y) ∈ ΩP , a 7→ θ

(2)
P (x, y + a) is non-de
reasing over R

+.
• if (x− y)2 = P 2, θ(2)

P (x, y) = min{x, y}+ P .These properties are illustrated on �gure 2.10.
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Ω−
P
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P

Fig. 2.10 � Illustration of some properties of θ(2) : the fun
tion is non-de
reasing in all the dire
tions indi
ated by blue arrows.
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omputationLemma II.3.2.2 Properties of θ(1)
P

• θ(1)
P is 
ontinuous over R.

• θ(1)
P is non-de
reasing over R.We 
an therefore dedu
e the following properties for θPLemma II.3.2.3 Properties of θP

• θP is 
ontinuous over R
4.

• θP is a non-de
reasing fun
tion of ea
h of its variables.Proof :
• Using the 
ontinuity of θ

(1)
P and θ

(2)
P , θP is 
ontinuous everywhere, ex
ept possibly inpoints su
h that (a − b)2 = P 2, (b − c)2 = P 2, (c − d)2 = P 2 or (d − a)2 = P 2. As anexample, let us assume that (a− b)2 = P 2 and a > b. Then we have a = b + PThen θ

(2)
P (a, b) = a+b+

√
P 2

2 = 2a+2P
2 = a + P = θ

(1)
P (a).Similarly, if a < b, we get θ

(2)
P (a, b) = θ

(1)
P (b).The θ(1) mappings �sti
k� 
ontinuously on the border of the set where θ(2) < +∞, whi
hshows that θP is 
ontinuous at those points.

• The growing of θ results from the growing of θ
(1)
P and θ

(2)
P .

�Continuity 
an be geometri
ally interpreted in the following way : let usassume that for 
urrent values of U(i±h, j±h), the update is done from thethe ((i, j), (i+h, j), (i, j+h)) triangle � II.3.5 being true in this triangle. Letus also assume that U(i + h, j) in
reases until equality is rea
hed in II.3.5.Then, the solution is equal to U(i+ h, j), i.e. the gradient of U est 
ollinearwith ((i, j), (i, j + h)). The update value for the triangle is then equal to theupdate value for the ((i, j), (i, j + h)) edge (�gure 2.11).Updates from edges are therefore 
ontinuously taking over from the updatesfrom triangles when the laters be
ome impossible.We now present the 
onvergen
e proof of the algorithm :Proof :monotony :Follows immediately from proposition II.3.2.3.stability :The existen
e of a solution of dis
rete problem 
an be demonstrated by borrowingan argument from [174℄.
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b

a

θ
(2)
P (a, b)

θ
(2)
P (a, b)

θ
(2)
P (a, b)

b

a

b

a

Fig. 2.11 � Continuity of θp : the update step from the θ(1)
P (a) edge 
onti-nuously taking over from the updates from θ

(2)
P (a, b) triangle when the gra-dient be
omes 
ollinear with the edge � after an in
rease of b.Let us 
onsider an algorithm whi
h apply the update state to all the points ofthe dis
retization, in the same order as Fast-Mar
hing algorithm, but an in�nitenumber of times (whi
h 
orrespond to the iterative version of Dijkstra algorithmproposed in II.1.1).For every point (i, j), d(i, j) is thus non-in
reasing, and inferiorly bounded by 0.Therefore it tends toward some limit denoted dit(i, j).After an update step over (i, j), we have S(h, (i, j), U(i, j), U) = 0. S(h, (i, j), t, U)being 
ontinuous in t and in U , S(h, (i, j), t, U) tends toward

S(h, (i, j), dit(i, j), dit) along the iterations. Furthermore, after an in�nite number ofiterations, we have S(h, (i, j), U(i, j), U) = 0. This implies S(h, (i, j), dit(i, j), dit) =

0, and dit is therefore a solution of the dis
rete s
heme.
dit is inferiorly bounded by 0. It is possible to show the existen
e of an upper boundwhi
h depends on the diameter of E, on the minimal potential over E � whi
h isnot zero by 
ompa
ity of E an 
ontinuity of the potential.
onsisten
y :let us 
onsider a fun
tion ϕ C∞ bounded over E, (x, y) ∈ E, and ξ ∈ R

+∗.
• Firstly, let us note that

s
(1)
1 = ϕ(x′ + h, y) + ξ + hPx′y′ (II.3.17)and

s
(1)
1 − ϕ(x′, y′)− ξ

h
=

D+xϕ(x′, y′)

h
+ Px′y′ (II.3.18)tends toward

dxϕ(x, y) + Pxy = θ
(1)
Pxy

(dxϕ(x, y)) (II.3.19)



62 Shortest paths 
omputationwhen (x′, y′)→ (x, y), h→ 0 and ξ → 0.Similarly, for the other edges, we �nd limits θ
(1)
Pxy

(−dxϕ(x, y)), θ
(1)
Pxy

(dyϕ(x, y))and θ
(1)
Pxy

(−dyϕ(x, y)).
• Let us now 
onsider S

(2)
1 triangle, and let us assume that (dxϕ(x, y)−dyϕ(x, y))2 <

P 2
xy.

P is 
ontinuous, and ϕ C∞. For any h 
lose enough to 0 and (x′, y′) 
lose enoughto (x, y), we thus have (ϕ(x′ + h, y′) + ξ − ϕ(x′, y′ + h)− ξ)2 = (ϕ(x′ + h, y′)−
ϕ(x′, y′) + ϕ(x′, y′) + ϕ(x′, y′ + h))2 ≤ h2P 2

x′y′ .Then,
s
(2)
1 =

2ξ+ϕ(x′+h,y′)+ϕ(x′,y+h′)+
√

2h2P 2
x′y′

−(ϕ(x′+h,y′)−ϕ(x′,y′+h))2

2and
s
(2)
1 − ϕ(x′, y′)− ξ

h
=

D+xϕ(x′,y′)
h

+ D+yϕ(x′,y′)
h

+

√

2P 2
x′y′ −

(
D+xϕ(x′,y′)

h
− D−yϕ(x′,y′)

h

)2

. (II.3.20)When h and (x′, y′) 
onverge toward their limits, this expression tends to
dxϕ(x, y) + dyϕ(x, y) +

√

2P 2
xy − (dxϕ(x, y)− dyϕ(x, y))2 =

θ(2)(dxϕ(x, y), dyϕ(x, y)) (II.3.21)Similar results 
an be obtained for the three remaining triangles :� if (dxϕ(x, y) + dyϕ(x, y))2 < P 2
xy,

s
(2)
2 −ϕ(x′,y′)−ξ

h
tends toward θ(2)(dxϕ(x, y),−dyϕ(x, y)).� if (−dxϕ(x, y) + dyϕ(x, y))2 < P 2

xy,
s
(2)
3 −ϕ(x′,y′)−ξ

h
tends toward θ(2)(−dxϕ(x, y),−dyϕ(x, y)).� if (−dxϕ(x, y)− dyϕ(x, y))2 < P 2

xy,
s
(2)
4 −ϕ(x′,y′)−ξ

h
tends toward θ(2)(−dxϕ(x, y), dyϕ(x, y)).Furthermore, these results remain true in the 
ases when (±dxϕ(x, y)±dyϕ(x, y))2 >

P 2
xy � when the limit is +∞.

• Thus � outside the limit 
ases where (±dxϕ(x, y)± dyϕ(x, y))2 = P 2
xy, we have

S(h, (x′, y′),Φ(x′, y′) + ξ,Φ + ξ) =
min{s(i)

j − ϕ(x, y)}
h

→
h→0

(x′,y′)→(x,y)
ξ→0

θPxy(dxϕ(x, y), dyϕ(x, y),−dxϕ(x, y),−dyϕ(x, y)) (II.3.22)
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hing on a regular grid 63It is possible to show that this equation still holds in the limit 
ases : for example,let us assume that (dxϕ(x, y)− dyϕ(x, y))2 = P 2
xy and dxϕ(x, y) > dyϕ(x, y). Letus 
onsider ((xk, yk), hk, ξk)→ ((x, y), 0, 0).let us denote by ((xψ(k), yψ(k)), hψ(k), ξψ(k)) the subsequen
e made from termssu
h that (ϕ(xψ(k) + h, yψ(k))− ϕ(xψ(k), yψ(k) + h))2 ≤ h2P 2

xψ(k)yψ(k)
, and

(xψ′(k), yψ′(k), hψ′(k), ξψ′(k)) the 
omplementary subsequen
e.Let us 
onsider sk =
s21−ϕ(xk,yk)

hk
. Like above, we have

lim
k→+∞

sψ(k) = θ(2)(dxϕ(x, y), dyϕ(x, y)).Furthermore, we still have lim
k→+∞

s
(1)
1 −ϕ(xk,yk)

hk
= θ(1)(dxϕ(x, y))As observed during the 
ontinuity proof of θ, these two quantities are equal. Wededu
e that

min{s2
1, s

1
1} − ϕ(xk, yk)

hk
→ θ(1)(dxϕ(x, y)).The other 
ases 
an be ta
kled in the same way. Thus II.3.22 is valid for anyvalue of ϕ.The s
heme is thus 
onsistent with the following Hamiltonian

H(∇ϕ, (x, y))
def.
= θPxy (dxϕ(x, y), dyϕ(x, y),−dxϕ(x, y),−dyϕ(x, y)) (II.3.23)Furthermore, θ(1) and θ(2) being non-de
reasing, we have

H(∇ϕ, (x, y)) =

min{θ(2)(−|dxϕ(x, y)|,−|dyϕ(x, y)|), θ(1)(−|dyϕ(x, y)|), θ(1)(−|dyϕ(x, y)|)}.(II.3.24)One easily sees that H(∇ϕ, (x, y)) = 0 if and only if |∇ϕ(x, y)|2 − P 2
xy = 0.The s
heme is thus 
onsistent.ordering :the proof of Dijkstra algorithm 
an be exa
tly transposed here. For any point tof the dis
retization, let us denote by dit(t) the distan
e obtained by the algo-rithm des
ribed in the stability proof.. dit is thus a �x-point of the update s
heme.Furthermore, we haved ≥ dit (the �rst iteration 
orrespond exa
tly to the one ofFast-Mar
hing algorithm, and the following iterations 
an only de
rease the valuesof ea
h point.)Let us 
onsider the Fast-Mar
hing algorithm.We are going to prove indu
tively that, at any step of the algorithm, ∀t ∈ A d(t) =

dit(t). Noti
e that this property holds after the initialisation.



64 Shortest paths 
omputationLet us 
onsider the time when a point with minimal distan
e is 
hosen in T . Letus 
onsider t0 ∈ T ∪ F minimising dit(t).let us denote by
• S−(t0) the set of triangles/edges adja
ent to t0 and su
h that all the points ofthe triangle/edges di�erent from t have a value smaller than dit(t0),
• SA(t0) the set of triangles/edges adja
ent to t0 and su
h that all the points ofthe triangle/edges di�erent from t are in A.
dit veri�es II.3.14. Thus, we have
dit(t0) = min

Sij∈S−(t0)
sij(dit)Furthermore, if v /∈ A, we have dit(v) ≥ dit(t0).We dedu
e dit(t0) ≥ min

Sij∈SA(t0)
sit

i
j(dit)Let us 
onsider all the update operation that o

urred to t0 until now. The updatefrom a triangle or an edge in SA(t0) o

urred when the last vertex but one of thistriangle or this edge was transferred in A.We then have d(t0) = min

Sij∈SA(t0)
sij = min

Sij∈SA(t0)
sij(dit)by hypothesis.Then d(t0) ≤ dit(t0). Furthermore, for all v in T , d(t0) ≤ dit(t0) ≤ dit(v) ≤ d(v).In parti
ular, d(t0) ≤ d(v). This inequality is stri
t, unless if dit(t0) = dit(v). Wethus 
an assert that the set of verti
es of T of minimal evaluated distan
e 
oin
ideswith the set of verti
es of T of minimal a
tual distan
e.The 
hosen vertex t is therefore a vertex with minimal distan
e, and we have d(t) =

dit(t), whi
h 
on
ludes the proof.
�The monotoni
ity 
ondition will be the main obsta
le to the generalisationof Fast-Mar
hing algorithm to more general Riemannian manifolds.II.3.2.1 Improving the running timeThe 
al
ulation (II.3.12) request up to four resolutions of se
ond degree equa-tions. It is possible to redu
e this amount of operations.Let us de�ne Ax = (i− 1, j) and A′

x = (i + 1, j) if U(i − 1, j) ≤ U(i + 1, j),
Ax = (i+ 1, j), and A′

x = (i− 1, j) otherwise. Similarly, let us de�ne Ay and
A′

y. Up to a swit
h of two 
oordinates, we 
an assume that Ay ≤ Ax. Figure2.12 illustrates two possible 
on�gurations of s(2)
1 , s(2)

2 , s(2)
3 and s

(2)
4 . Let us
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x, Ay)Fig. 2.12 � Some possible 
on�gurations for s(i)

j .
note that we 
an also draw points 
orresponding to values of s(1)

1 , s(1)
2 , s(1)

3and s(1)
4 .
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omputationA 
ase-study of the di�erent 
on�gurations gives the following results :Proposition II.3.2.4
min{s(i)

j } is
• either rea
hed for the ((i, j), Ax, Ay) triangle if the 
orresponding value is�nite,
• or rea
hed for the ((i, j), Ay) edge.To summarise, we de�ne

U(i, j)←







s
(2)
∗ =

U(Ax)+U(Ay)+
√

2h2P (i,j)2−(U(Ax)−U(Ay))2

2if (U(Ax)− U(Ay))
2 ≤ h2P (i, j)2

s
(1)
∗ = min{U(Ax), U(Ay)}+ hP (i, j)otherwisewhi
h redu
es the number of operations to perform with respe
t to (II.3.12)to at most one resolution of a quadrati
 equation.Despite the di�erent formulation, this s
heme is equivalent to the one pro-posed in [188, 174℄ :

(max{Ui,j−Ui−1,j , Ui,j−Ui+1,j , 0})2+(max{Ui,j−Ui,j−1, Ui,j−Ui,j+1, 0})2 = P 2
(i,j)(II.3.25)Other improvements of the running time have been proposed, most of theminspired by variations of Dijkstra algorithm.

• When one is willing to 
ompute a shortest path between two points, it ispossible to stop the front propagation when the se
ond point is rea
hed.Another approa
h 
onsists in propagating fronts simultaneously from bothpoints, and to stop when the two fronts interse
t. A gradient des
ent fromthe interse
tion in ea
h front will then give an approximation of the shor-test path between the two 
onsidered points [50℄.
• In the same arti
le, a freezing strategy is proposed � whi
h allows to stopfront propagation in high-potential areas.
• Inspired by Best First Sear
h algorithm, [156℄ proposes to use heuristi
sto drive the propagation of the front in the 
orre
t dire
tion.
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• At the sake of a slight lost of pre
ision, [219℄ has shown the possibility ofimplementing the algorithm with a O(n) time 
omplexity, using a untidypriority queue data stru
ture instead of a heap to implement T .Noti
e that all these strategies 
an also be applied to the more general ver-sions of Fast-Mar
hing algorithm we will des
ribe in the sequel.II.3.3 In
reasing the neighborhood systemEven if 
onvergen
e of this algorithm is proved when the dis
retion steps
onverges toward 0, it is not an exa
t algorithm. Figures 2.14 and 2.15 showerrors obtained by the algorithm. Unlike the results obtained by Dijkstraalgorithm, we 
an observe that the relative error vanishes as we move awayfrom the origin. This means dually that � for a 
onstant potential � theevaluated distan
e map 
onverge toward its theoreti
al value when the thedis
retization step tends toward zero.The numeri
al error of the algorithm is more important in the neighborhoodof s, in dire
tions where no edges are present in the neighborhood system. Notunlike the 
ase of Dijkstra algorithm, it is possible to improve the pre
ision ofthe algorithm by 
onsidering a more important neighborhood system (�gure2.13) � as proposed in [46℄. The presented system 
onsists in 8 triangles and
8 edges.

S
(2)
2

S
(2)
1

S
(2)
3

S
(2)
5

S
(2)
6

S
(2)
7

S
(2)
8

(i− 1, j + 1) (i, j + 1) (i+ 1, j + 1)

(i− 1, j)

(i− 1, j − 1)

(i, j) (i+ 1, j)

(i, j − 1) (i+ 1, j − 1)

S
(2)
4

Fig. 2.13 � 8-neighbors system for 2D Fast-Mar
hingThe Fast-Mar
hing algorithm remains the same. The update s
heme 
onsists



68 Shortest paths 
omputationin sele
ting the triangle or the edge whi
h produ
es the minimal value. Ho-wever, the are two di�eren
es with the previously exposed algorithm :
• We need to 
ompute update values for triangles with a di�erent shape� and therefore to �nd an equivalent of II.3.1 for those triangles. It is aspe
i�
 
ase of a more general equation we will introdu
e in se
tion II.4.
• It is not possible to redu
e the amount of ne
essary 
al
ulations as mu
has in the previous 
ase.II.3.4 Numeri
al resultsWe 
ompare numeri
al results obtained by the methods exposed in the pre-vious se
tions.Figures 2.14 and 2.15 shows results obtained by the in
rease of the neighbo-rhood system. Figure 2.16 presents similar results for a spa
e 
onsisting oftwo half-planes with uniform potentials 1 and 4 � for whi
h it is possible to
ompute the distan
e map with arbitrary pre
ision.In
reasing the neighborhood system results in an improvement of the resultsobtained by Dijkstra algorithm. However, as shown in 2.15, the error does notvanish as we move away from the origin � or dually when the the dis
retiza-tion step tends toward zero. On the opposite, it is the 
ase for approximation
omputed by Fast-Mar
hing algorithm.Figure 2.17 shows some shortest paths 
omputed from the distan
es maps.II.3.5 Generalisation to nDIt is straightforward to generalise the presented algorithm to arbitrary di-mension.Let us 
onsider a n-dimensional spa
e, dis
retized with a regular grid, anda neighborhood system 
onsisting of 2n neighbors. Su
h a system de�nes
Kn

def.
= 2n simpli
es of dimension n, Kn−1

def.
=
(

n
1

)
2n−1 = n2n−1 simpli
es ofdimension n− 1 . . .K1

def.
= 2

(
n

n−1

)
= 2n simpli
es de dimension 1 � i.e. 3n − 1simpli
es (�gure 2.18 shows some of these simpli
es in the 
ase of dimension4). These simpli
es are a generalisation of triangles and edges in dimension2.
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Fig. 2.14 � Relative errors obtained by the di�erent algorithms for a uniformpotential over a regular 100 × 100 grid. Left 
olumn, top to bottom : thepotential, Fast-Mar
hing with 4 neighbors, Fast-Mar
hing with 8 neighbors.Right 
olumn, top to bottom : Dijkstra with 4 neighbors, Dijkstra with 8neighbors, Dijkstra with 16 neighbors. All the images are represented withthe same gray level s
ale : bla
k : 0%, white : ≥ 40%
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Fig. 2.15 � Relative errors obtained by the di�erent algorithms for a uniformpotential over a regular 100× 100 grid. Top : maximum of relative error fora �xed distan
e to origin. Bottom : L2 norm of relative error for a �xeddistan
e to origin.
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Fig. 2.16 � Relative errors obtained by the di�erent algorithms for apie
ewise-
onstant potential over a regular 100× 100 grid. Left 
olumn, topto bottom : the potential, Fast-Mar
hing with 4 neighbors, Fast-Mar
hingwith 8 neighbors. Right 
olumn, top to bottom : Dijkstra with 4 neighbors,Dijkstra with 8 neighbors, Dijkstra with 16 neighbors. All the images arerepresented with the same gray level s
ale : bla
k : 0%, white : ≥ 40%
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Fig. 2.17 � Shortest paths obtained for a 
onstant potential (top), and for apie
ewise 
onstant potential (bottom), for the Fast-Mar
hing algorithm with4 (left) and 8 (right) neighbors.It is possible to dis
retize the Eikonal equation on ea
h simplex, and thus toobtain a generalisation of (II.3.1) and (II.3.3). Let us 
onsider a simplex S(k)
lof dimension k, and let us denote by v1 . . . vk the values on its verti
es. Letus de�ne u = U(i1, i2 . . . in). We have

∇U ≈
(
v1 − u
h

, . . .
vk − u
h

) (II.3.26)and
ku2 − 2u

k∑

i=1

vi +
k∑

i=1

v2
i − h2P (i, j)2 (II.3.27)
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Fig. 2.18 � Some simpli
es adja
ent to x in dimension 3.Properties shown in 2D 
an easily be generalised.In the 
ase when
∆′ def.

= (
k∑

i=1

vi)
2 − k(

k∑

i=1

v2
i ) + kh2P (i, j)2

= kh2P (i, j)2 − 1

2

(
k∑

i=1

k∑

j=1

(vi − vj)
2

)

≥ 0 (II.3.28)the bigger solution of this equation is
u2

def.
=

(
∑k

i=1 vi

)

+
√

∆′

n
(II.3.29)In the 
ase when ∆′ ≥ 0, we thus have

u2 ≥ vl

⇔
∑k

i=1(vi − vl) ≥ 0 or (∑k
i=1(vi − vl)

)2

≤ h2∆′ (Cl)If the set C of all 
onditions (Cl) is veri�ed, we have ∆′ ≥ 0 have ∀l u2 ≥ vl.We thus de�ne
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θ

(k)
P : (xi) ∈ R

2k 7→






∑k
i=1 xi+

√

kP 2− 1
2

∑k
i=1

∑k
j=1(xi−xj)2

2
if C

1
+∞ otherwise (II.3.30)

s
(k)
l

def.
= θ

(2)
hP (i,j)(U(i1 + h . . . ik . . . in) . . . U(i1 . . . ik + h . . . in)) (II.3.31)and

θP (a+
1 , . . . a

+
n , a

−
1 , . . . a

−
n ) ∈ R+2n def.

= min
k=1..n

a±

i1
...a±

ik

{θ(k)
P (a±i1 . . . a

±
ik

)} (II.3.32)Therefore, we use the following update s
heme :
U(i1, . . . in)← min

i=1..k
j=1..Ki

{s(i)
j } = θhP(i,j)

(U(i1 + h, . . . , in), . . . , U(i1, . . . , in + h),

U(i1 − h, . . . , in), . . . , U(i1, . . . , in − h))(II.3.33)As in the 
ase of 2D, it is possible to restri
t the 
al
ulations to simpli
essu
h that their verti
es have values smaller than 
urrent value U(i, j).The algorithm is then the same as in dimension 2.Complexity. The update state requires 3n total 
omputations for ea
hvertex. The 
omplexity of the algorithm is thus a priori O(N(log(N)+n3n)),where N is the number of verti
es explored by the algorithm.Corre
tness. The 2D proof 
an be exa
tly transposed. It mainly relies onthe following lemma :Lemma II.3.5.1
• θP is 
ontinuous.
• θP is non-de
reasing in ea
h of its variables.1For pra
ti
al purposes, in order to 
he
k this 
ondition, one just need to 
ompute themaximal solution of the equation. If this solution exists and is bigger than all the vi, thenC holds.
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hing on a regular grid 75Proof :
• As in the 2D 
ase, 
ontinuity is derived from the study of 
onne
tions at points belongingto the border of C 
onditions. More pre
isely, we 
an show that if equality holds in (Cl),the solution obtained on the 
urrent simplex is equal to the solution obtained on the sub-simplex obtained by removing the lth vertex. This generalises the property illustratedby �gure 2.11 :Assume that we are on the border of the domain de�ned by C. Then there exists l su
hthat (∑k

i=1(vi − vl)
)2

= h2∆′,∑k
i=1(vi− vl) ≤ 0 and u2 = vl. After some 
al
ulations,we 
an write

vl =

∑

i6=l vi +
√

(k − 1)h2P 2
xy − 1

2

∑

i6=l
∑

j 6=l(vi − vj)2

k − 1hen
e
u2 = vl =

∑

i6=l vi +
√

(k − 1)h2P 2
xy − 1

2

∑

i6=l
∑

j 6=l(vi − vj)2

k − 1
,whi
h 
orresponds with the solution on the sub-simplex obtained by removing the lthvertex (this solution being 
learly bigger than vi for all i 6= l).

• Growing is derived from growing of the θ(k) fun
tions with respe
t to ea
h of theirvariables in the domain where they are �nite.
�The 
onvergen
e proof is now exa
tly parallel to the one in 2D : stabilityand ordering are proved in the same way. Monotony of the s
heme 
omesfrom monotony of θP . In order to prove 
onsisten
y, we 
an demonstrate asin dimension 2 that if we de�ne

S(h, (x1, . . . , xn), t, U)
def.
==

θhP(x,y)
(U(x1 + h, . . . xn), . . . )− t

h
(II.3.34)then we have

lim
h→0

(x′
1,...,x′

n)→(x1,...,xn)
ξ→0

S(h, (x′, y′), ϕ(x′, y′) + ξ, ϕ+ ξ) =

θhP(x,y)
(d1ϕ(x, y), . . . dnϕ(x, y),−d1ϕ(x, y), · · · − dnϕ(x, y), ).

(II.3.35)This quantity vanishes if and only if ∇ϕ satis�es the Eikonal equation.
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omputationII.3.5.1 Improving the running timeThe 
omputation of (II.3.33) requires up to the resolution of 3n quadrati
equations. As in the 2D 
ase, it is possible to redu
e this number of opera-tions.Let us de�ne Ak = (i1 . . . , ik+h, . . . in) if U(i1 . . . , ik+h, . . . in) ≤ U(i1 . . . , ik−
h, . . . in), and U(i1 . . . , ik − h, . . . in) otherwise. Up to a permutation of 
oor-dinates, we 
an assume that U(A1) ≤ · · · ≤ U(An).We then de�ne

S
(n)
∗ = ((i1 . . . in), A1, . . . An)

S
(n−1)
∗ = ((i1 . . . in), A1, . . . An−1)

. . .

S
(1)
∗ = ((i1 . . . in), A1)

(II.3.36)and sn
∗ . . . s

1
∗ the 
orresponding values.We thus have the following result � whi
h generalise the result obtained inII.3.2.1 :Proposition II.3.5.2

• For all k ∈ [1..n], for all simplex S(k)
l of dimension k, if s(k)

∗ 6= ∞ then
sk
∗ ≤ s

(k)
l .

• For all k ∈ [2..n] if s(k)
∗ 6= +∞, then s(k−1)

∗ 6= +∞ and s(k) ≤ s
(k−1)
∗ .Proof :Comes immediately from monotony properties of θ

(k)
P in ΩkP .

�We 
an then use the following algorithm to 
ompute the update step � whi
hwas proposed in the appendix of [99℄ :whi
h redu
es the number of quadrati
 equations to solve to n− 1 instead of
3n.II.3.6 A step toward anisotropyThe update s
heme for an anisotropi
 is theoreti
ally more 
omplex thanthe s
hemes we studied in the previous se
tions. It will be studied in fullgenerality in se
tion II.4.
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hing on a regular grid 77Algorithm 6 update(t)Input: A vertex t = (i1 . . . in).for k varying from n to 1 doCompute s(k)
∗ .If s(k)

∗ 6=∞, U(i1 . . . in)← s
(k)
∗ and quitend forHowever, in this se
tion, we will study a useful spe
i�
 
ase of anisotropi
Fast-Mar
hing algorithm on a regular grid � for whi
h the prin
ipal 
ompo-nents of the potentials are 
ollinear with the grid axis. For this problem, thepreviously exposed method works dire
tly. Noti
e that [186℄ rapidly men-tions a method to solve the equivalent problem of �nding distan
e maps forisotropi
 potential on orthogonal irregular grid, without explaining pre
iselyhow to solve the dis
retized equation.Let us 
onsider a n dimensional spa
e, dis
retized with a regular grid. Letus assume that for any point, the potential has the following expression :

g(x)(v) = λx1v
2
1 + · · ·+λxnv

2
n � i.e. the tensor g has its prin
ipal 
omponentsaligned with the axis of the grid.Let us 
onsider a simplex S(n)
l of dimension n, and denote by v1 . . . vn thevalues on the verti
es. Let us de�ne u = U(i1, i2, . . . in). Inje
ting the dis
reteform of the gradient in I.3.15, we have

n∑

i=1

λxi(u− vi)
2 = 1 (II.3.37)hen
e

n∑

i=1

λxi

(
(u− vi)

h

)2

= 1 (II.3.38)
u2

(
n∑

i=1

λxi

)

− 2u

(
∑

i=1

viλxi

)

+
n∑

i=1

λxiv
2
i − h2 = 1 (II.3.39)When
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∆′ def.

= (
n∑

i=1

λxivi)
2 −

n∑

i=1

λxi(
n∑

i=1

v2
i ) +

k∑

i=1

λxih
2P (i, j)2

=
n∑

i=1

λxih
2P (i, j)2 − 1

2

(
k∑

i=1

k∑

j=1

λxiλxj(vi − vj)
2

)

≥ 0 (II.3.40)the bigger solution of this equation is
u2

def.
=

(
∑k

i=1 λxivi

)

+
√

∆′
∑n

i=1 λi

(II.3.41)The update step still 
onsists in 
omputing the update values for ea
h sim-plex, and to sele
t the minimal one. Similar 
al
ulations as in isotropi
 
aseshow the monotony on ea
h simplex of the previous expression � hen
e we
an dedu
e monotony and 
ontinuity of the update s
heme, and then its
onvergen
e.II.3.6.1 Improving the running timeImproving the running time is tougher in this situation.However, we 
an noti
e that if we de�ne A = (i1 ± h, . . . ik + h, . . . i1 ±
n), B = (i1 ± h, . . . ik − h, . . . i1 ± n), and if we assert for example that
U(A) ≤ U(B), 
omputing solutions on simpli
es 
ontaining A is useless.Indeed, su
h a solution is bigger than the one in the symmetri
 simplexobtained by repla
ing A with B.We thus de�ne Ak = (i1 . . . , ik+h, . . . in) if U(i1 . . . , ik+h, . . . in) ≤ U(i1 . . . , ik−
h, . . . in), and U(i1 . . . , ik − h, . . . in) otherwise. Up to a permutation of 
oor-dinates, we 
an assume that A1 ≤ · · · ≤ An.We 
an use the following algorithm to 
ompute the update value :The total number of quadrati
 equation to solve is thus 2n.Figure 2.19 shows shortest paths and distan
e maps 
omputed with thismethod.



II.3 Fast-Mar
hing on a regular grid 79Algorithm 7 update(t)Input: A vertex t = (i1 . . . in).Initialization:Set s∗ = +∞.for k varying from n to 1 doFor all k-uplet of points (Ai1 . . . Aik), 
ompute the solution s on thesimplex (t, Ai1 . . . Aik).
s∗ ← min{s, s∗}end for

U(i1 . . . in)← s∗.

Fig. 2.19 � Distan
e maps and shortest paths in anisotropi
 spa
es. Top :horizontal speed is twi
e the verti
al speed. Bottom : in upper half-plane,horizontal speed is twi
e the verti
al speed. The opposite holds in bottomhalf-plane.
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omputationII.4 Anisotropi
 Fast-Mar
hing, general 
aseIn this se
tion, we propose a s
heme for the 
omputation of distan
e mapsand shortest paths in Riemannian manifolds. We generalise results proposedin [97℄ et [30℄. This s
heme is dire
tly derived for the ones of previous se
tions.It also relies on the 
omputation of solutions for ea
h simpli
es adja
ent tothe 
urrent point. The smallest solution verifying 
onditions whi
h generaliseII.3.5 will be sele
ted as update value.We will also expose a 
onvergen
e proof for a large 
lass of 
ases. In the
ase of isotropi
 potential, the 
ondition for 
onvergen
e is that for any pointof the dis
retization and any adja
ent simplex, the angles of the simplex atthis point are a
ute. This is a generalisation of known results in dimension2 [97, 30℄.Noti
e that in the 
ase of a regular grid in dimension 3, our s
heme is equi-valent with the one proposed in [163℄.II.4.1 Solution 
omputation in a simplexGeneralising the algorithms of previous se
tion on Riemannian manifolds isstraightforward. Only the 
omputation of the s(i)
j 
hanges. By the way, as wewill �nd out, 
ases appear in whi
h 
onvergen
e of the method is lost.Inasmu
h as introdu
ing anisotropi
 potentials does not result in extra di�-
ulty, we will dire
tly des
ribe the more general 
ase.The framework of this se
tion in the one des
ribed in I.3.1.6. Let V be aRiemannian manifold of dimension n, dis
retized with a set of points. We
onsider a neighborhood system around this point, whi
h 
onsists of severalsimpli
es (2.13 and 2.18 are some examples in dimension 2 and 3).

V is lo
ally di�eomorphi
 to an open subset of R
n, and we will work on su
ha spa
e to derive the equations in the sequel.Let x be a point of the dis
retization of V . Let us 
onsider a simplex S(k) ofdimension k, adja
ent to x. Up to a translation, we assume that x = 0.The equation we want to dis
retize is as follow :

‖∇U‖x = 1 (II.4.1)
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h we 
an rewrite
‖M∇U‖ = 1 (II.4.2)where M is the n×n symmetri
 positive de�nite matrix asso
iated with thepotential.We denote by x1 . . . xk the other verti
es of the simplex, v = (v1 . . . vk)T the
orresponding values, and

X
def.
=






x1
1 . . . x1

n... ...
xk

1 . . . xk
n




 (II.4.3)We want to estimate u = U(x) = U(0) su
h that (II.4.2) holds.Asserting U is a�ne on the simplex de�ned by 0, x1, . . . xn. ∇U is therefore
onstant on the simplex.For all i ∈ [1..k] let us 
onsider the fun
tion ui(λ)

def.
= U(λxi).Di�erentiating this expression, we get : u′i(λ) =< ∇U, xi > � whi
h is
onstant.Furthermore, we have ui(0) = u and ui(1) = vi.We dedu
e

< ∇U, xi >= vi − u (II.4.4)hen
e
∑

j

Ujx
i
j = vi − u (II.4.5)and rewriting this in term of matri
es,

X∇U = v − u1 (II.4.6)If we denote by X+ def.
= (X tX)−1X t the pseudo-inverse of X, we have

∇U = X+(v − u1) (II.4.7)Noti
e that X+, only depends on the geometry of the neighborhood, and 
anthus be pre-
omputed.
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onstraint (II.4.1), whi
h 
an be rewritten
∇U tMM∇U = 1. (II.4.8)

(X+(v − u1))tMMX+(v − u1) = 1 (II.4.9)If we de�ne b def.
= X+tMMX+, we thus have

(v − u1)tb(v − u1) = 1 (II.4.10)Hen
e
1 = (v − t1)tb(v − u1) (II.4.11)

= u2(1tb1)− 2u(vtb1) + v
tbv (II.4.12)whi
h is a quadrati
 equation in u.

b is a symmetri
 positive de�nite matrix. We denote by < ., . >b the asso
ia-ted inner produ
t.The equation be
omes
u2||1||2b − 2u < v,1 >b +||v||2b − 1 = 0 (II.4.13)When the grid is regular and the potential is isotropi
 with value P , wehave b = PIk, and we �nd the equation (II.3.27). The 
ase ta
kled in II.3.6
orresponds 
orresponds to a diagonal matrix b.This equation has roots if an only if
∆′ = ||1||2b+ < v,1 >2

b −||v||2b ||1||2b ≥ 0 (II.4.14)This has the following geometri
 interpretation : in the R
n spa
e equippedwith the metri
 indu
ed by b, the inequality is equivalent to the distan
efrom v to ve
t(1) being less than 1.The bigger root is then

u2 =
< v,1 >b +

√
∆′

‖1‖2b
(II.4.15)
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 framework, if we de�ne
X ′ def.

= XM−1 et U ′ = M−1U (II.4.16)we get
b = X ′+tX ′+and

∇U ′ = X ′+(v − 1u)Cal
ulations in anisotropi
 
ase are then equivalent to 
al
ulations in isotro-pi
 
ase where simpli
es were deformed by the metri
 of spa
e.Therefore, from a theoreti
al, there is no major di�eren
e between updatesteps in isotropi
 an anisotropi
 
ases.II.4.1.2 Conditions for 
onvergen
eAs in the regular grid 
ase, the 
onvergen
e proof relies on
• the fa
t that the solution on ea
h simplex is a non-de
reasing fun
tion ofits variables.
• the fa
t that the solution on ea
h simplex is bigger that the values on otherverti
es of the simplex.This se
ond 
ondition 
an be written

(u1− v) ≥ 0 (Cu) (II.4.17)In the isotropi
 
ase, this has a simple geometri
 interpretation : it just assertsthat the gradient ∇U of the found solution must be in the opposite dire
tionwith respe
t to all edges of the simplex (�gure 2.20 (left)).Let us look for the monotony 
ondition on the simplex.We start from equation (II.4.15), and di�erentiate it with respe
t to vi. Weget
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Cu Cm

u2 u2

Fig. 2.20 � Geometri
al interpretation of 
onditions Cu and Cm for a bi-dimensional simplex (isotropi
 
ase). Top : Cu 
orresponds to the gradientbeing in the opposite dire
tion with respe
t to the edges of the simplex. Cm
orresponds to the gradient 
oming from inside the simplex. Bottom : onthe left, a solution whi
h satis�es Cu but not Cm. In
reasing the value ofthe right vertex while keeping the norm of the gradient 
onstant results ina de
rease of the solution (bla
k arrows). On the right, a solution satisfying
Cu and Cm.

∂u2

∂vi
=
< ∂v

∂vi ,1 >
√

∆′+ < ∂v

∂vi ,1 >< v,1 > − < ∂v

∂vi ,v >< 1,1 >

‖1‖2b
√

∆′ (II.4.18)or
∂v

∂vi
= (0, 0, . . . 1 . . . , 0, 0) (II.4.19)
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e
∇u2 =

b1
√

∆′ + b1 < v,1 > −bv < 1,1 >

‖1‖2b
√

∆′
=
b(1u− v)√

∆′
(II.4.20)i.e. monotony on the simplex holds if and only if

b(u21− v) ≥ 0 (Cm) (II.4.21)In the isotropi
 
ase, this 
ondition 
an be rewritten X+t∇U ≤ 0. From ageometri
 point of view, it is equivalent to the fa
t that the gradient 
omesfrom inside the 
onsidered simplex (�gure 2.20 (right)).In the 
ase of a regular grid with isotropi
 potential, we have b = Ik, and thetwo 
onditions Cu and Cm 
oin
ides � whi
h is 
oherent with the geometri
interpretation � but it is no longer the 
ase in the more general framework.However, we have the following property :Proposition II.4.1.1Up to lo
al deformation of the simplex using II.4.16, let us assume that thepotential in x is isotropi
.If the angles of the simplex adja
ent to x are a
ute, then
Cm ⇒ Cu.Proof :Indeed, if the designated angles are a
ute, then

XXt ≥ 0.Furthermore, let us noti
e that b−1 = (X+tX+)+ = XXt.Let us assume that
b(u21− v) ≥ 0.Multiplying by b−1, we have (u21− v) ≥ 0.

�Noti
e that if the 
urrent point x is entirely surrounded by simpli
es (inthe sense that the union of simpli
es adja
ent to x 
ontains a topologi
alneighborhood of x), there will be a simplex 
ontaining the gradient, and the
(Cm) will be veri�ed. In this 
ase, the previous property asserts that (Cu)will be veri�ed � whi
h will be ne
essary to the 
onvergen
e of the s
heme.
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h verifying themonotony 
ondition (if it exists). In parti
ular, this solution is superior tothe values of other points of the simplex. If su
h a solution does not exist,we set s(k) = +∞.Furthermore, we de�ne θ(k)
b as the fun
tion whi
h maps the values on theverti
es of the simplex vi to s(k).

II.4.2 Update s
hemeThe update s
heme simply 
onsists in sele
ting the smallest value produ
esby a simplex adja
ent to x.
U(x)← min

s
s(i) (II.4.22)As in the previous se
tions, the points are explored in a non-in
reasing or-dering. When a point x is transferred to A, the update step is applied to itsneighbors. It is also possible to 
ompute updates only from simpli
es 
ontai-ning x and other points in A.We denote by θ = min θk

b the fun
tion that maps the set of values of neighborsof x to the sele
ted update value.
II.4.3 Convergen
e proofHere again, the proof relies on the fa
t that on the border of Cm 
onditions,the 
omputed solution is equal to the solution 
omputed on a sub-simplex �whi
h will imply the 
ontinuity of θ.
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ase 87We will need the following lemma :Lemma II.4.3.1 If a ∈ Mn(R) , let us a[i] the matrix from whi
h the ithline and ith 
olumn were deleted. If v ∈ Mn,1(R), let us denote by v[i] theve
tor from whi
h the ith element was suppressed.Let b ∈Mn(R) be a symmetri
 positive de�nite matrix.Then
v solution de vtbv = 1 with biv = 0

⇒

v[i] solution de vt
[i]((b

−1)[i])
−1v[i] = 1Proof :We de�ne w = bv, hen
e v = b−1w.By hypothesis we have vtbv = 1 and biv = 0.Therefore wtb−1w = 1 and wi = 0, and wt[i](b

−1)[i]w[i] = 1.By the way, we have v[i] = (b−1)[i]w[i], so that w[i] = ((b−1)[i])
−1v[i], and vt[i]((b

−1)[i])
−1v[i] =

1.
�Let us 
onsider again the dis
retization of Eikonal equation over the S(k)simplex. (II.4.10) : (v− u1)tb(v− u1) = 1. Let us 
onsider a solution of thisequation su
h that it is at the border of Cm 
onditions 2, i.e. bl(u1−v) = 0.From the pre
eding lemma, we have

(u1[l] − v[l])
t((b−1)[l])

−1(u1[l] − v[l]) = 12There is a te
hni
al di�
ulty here � related to positivity 
ondition of ∆′ : indeed,
∆′ ≥ 0 is a ne
essary 
ondition to the existen
e of a solution verifying Cm. Therefore, itseems ne
essary to analyse the behaviour of the solution in the limit 
ase ∆′ = 0. However,as in the 
ase of dimension 2 on a regular grid, we 
an show that Cm is �stronger� than
∆′ ≥ 0, i.e. one never has ∆′ = 0 and Cm. Indeed, if we assume ∆′ = 0, Cm is rewritten
b1 < v, 1 >b −bv‖1‖2b ≥ 0. Multiplying with v

t, we have < v, 1 >2
b −‖v‖2b‖1‖2b ≥ 0, whi
his 
ontradi
tory with ∆′ = ‖1‖2b+ < v, 1 >2

b −‖v‖2b‖1‖2b = 0.
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e b−1 = XM−1M−1X t, and
(b−1)[l] = (X[l])M

−1M−1(X[l])
t.

u is then solution of the dis
retized Eikonal equation on the sub-simplexobtained from S(k) by deleting the lth vertex � this solution being 
learlysatisfying Cm.)Continuity of θ follows.We know give the sket
h of 
onvergen
e proof :monotony Follows immediately from monotony on ea
h simplex, and fromthe 
ontinuity of θ.stability The argument is the same as in dimension 2.
onsisten
e In the sequel, we will assume that the simpli
es of the neighborhood-system homotheti
ally tends toward a single point. It will be the 
aseif the 
onsidered spa
e is dis
retized by regular simpli
es of side h � orif it is 
onsists of simpli
es build always in the same way on a regulargrid of side h. It is possible to extend the results presented here : forexample, they remain true for simpli
es whi
h volume tends toward 0and su
h that the 
orresponding normalised simpli
es tend toward alimit simplex. We restri
ts ourselves to the latter 
ase, in order not tomake the notations too heavy.Let us 
onsider a fun
tion ϕ ∈ C∞ and x = (x1 . . . xn).Let us 
onsider a point x′ = (x′1 . . . x
′
n), and a simplex (x′, x(1) . . . x(k))� its asso
iated matrix being hX.Let us denote bhx′

def.
= (hX)+tMx′Mx′(hX)+ and uh = θbhx′

the solution
omputed on this simplex (if it exists) when the values on other verti
esare vh = (ϕ(x(1)) . . . ϕ(x(k))). Let us 
onsider ξ ∈ R

uh + ξ − ϕ(x′)− ξ =

<vh−ϕ(x′),1>b
hx′

+
√

‖1‖2
b
hx′

+<vh−ϕ(x′),1>2
b
hx′

−||vh−ϕ(x′)||2b
hx′

‖1‖2
b
hx′

‖1‖2
b
hx′

(II.4.23)Furthermore, when h→ 0 and x′ → x, vh−ϕ(x′) ≈ hX∇ϕ. Therefore,denoting b def.
= X+tMxMxX

+, we have
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x

x1
x2

uh

x

x1
x2

uh

x

x1
x2

uh

ϕ(x)

ϕ(x)
ϕ(x)

‖Mx∇ϕ‖ > 1 ‖Mx∇ϕ‖ = 1 ‖Mx∇ϕ‖ < 1Fig. 2.21 � Consisten
y : di�erent 
ases
lim
h→0
x′→x
ξ→0

uh − ϕ(x′)

h
=

< X∇ϕ,1 >b +
√

‖1‖2b+ < X∇ϕ,1 >2
b −||X∇ϕ||2b‖1‖2b

‖1‖2b
=

θ
(k)
b (X∇ϕ) (II.4.24)A similar analysis as the one 
ondu
ted in 2D and relying on the 
onti-nuity of θ = min θ

(k)
b shows that

lim
h→0
x′→x
ξ→0

(S(h, x′, ϕ(x′) + ξ, ϕ + ξ)
def.
= θ(.)−ϕ(x′)

h
) has as a 
ontinuous limit.The equivalen
e between the vanishing of this limit and ϕ satisfyingEikonal equation remains to be 
he
ked.The underlying intuition is illustrated �gure 2.21. We will prove that, inthe limit, solutions to the dis
retized equation exist in a simplex whi
h
ontains ∇ϕ (after deformation in the anisotropi
 
ase). Dependingon how ‖Mx∇ϕ‖ 
ompares to 1, this solution will be stri
tly inferior,equal, or stri
tly superior to ϕ(x).Considering equation (II.4.24), we observe that for ea
h simplex, if

θ
(k)
b (X∇ϕ) 6= +∞ then
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θ

(k)
b (X∇ϕ) = 0

⇔< X∇ϕ, 1 >b≤ 0 et ‖X∇ϕ‖2b = ‖MxX
+X∇ϕ‖2 = 1 (II.4.25)

θ
(k)
b (X∇ϕ) > 0

⇐ ‖X∇ϕ‖2b = ‖MxX
+X∇ϕ‖2 < 1 (II.4.26)

θ
(k)
b (X∇ϕ) < 0

⇐< X∇ϕ, 1 >b≤ 0 et ‖X∇ϕ‖2b = ‖MxX
+X∇ϕ‖2 > 1 (II.4.27)By the way, X+X∇ϕ is the proje
tion of ∇ϕ onto the linear span ofthe simplex.Several 
ases have to be 
onsidered :

• If ‖Mx∇ϕ‖ < 1, then for any simplex, ‖MxX
+X∇ϕ‖ < 1. From(II.4.26) we have θ(k)

b (X∇ϕ) = +∞ or θ(k)
b (X∇ϕ) > 0. Therefore

limS > 0.
• If ‖Mx∇ϕ‖ = 1, let us 
onsider the n-dimensional simplex 
ontaining
∇ϕ after deformation � su
h that θ(k)

b (X∇ϕ) 6= +∞. Then we have
θ

(k)
b (X∇ϕ) = 0 from (II.4.25). For other simpli
es, as in the previouspoint, we have θ(k)

b (X∇ϕ) = +∞ or θ(k)
b (X∇ϕ) > 0 and then limS =

0.
• If ‖Mx∇ϕ‖ > 1, we wish to show that there exists a simplex su
h that
θ

(k)
b (X∇ϕ) 6= +∞,< X∇ϕ, 1 >b≤ 0 and ‖X∇ϕ‖2b = ‖MxX

+X∇ϕ‖2 >
1. From (II.4.27), this would entail limS < 0.
θ

(k)
b (X∇ϕ) 6= +∞ is equivalent to the existen
e of a solution u ofdis
retized Eikonal equation in the simplex asso
iated with X, withvalues X∇ϕ on the verti
es � Cm being satis�ed.Let us 
onsider a simplex S(n) whi
h 
ontains ∇ϕ after deformation,and denote by Xn its asso
iated matrix. We de�ne u = ϕ(x) � it is
lear that u is not solution of the dis
retized equation on S(n). Letus progressively de
rease u. Two s
enarios 
an o

ur.



II.4 Anisotropi
 Fast-Mar
hing, general 
ase 91� Either we get a u value verifying the dis
retized Eikonal equation,at a stage when Cm still holds. The problem is then solved.� Either one of the Cm 
onditions is violated before, whi
h meansthat bn(u1−Xn∇ϕ) < 0. In the limit,∇U belongs to a sub-simplex
S(n−1).Iterating this pro
ess, we travel along a family of de
reasing simpli
es

(S(n), S(n−1), S(n−2) . . . ). We will denote by Xi and bi the 
orresponding matri
es. Noti
ethat < Xi∇ϕ, 1 >bi
≤ 0 holds for all these simpli
esIf a solution v of the dis
retized Eikonal equation is found a simplex

S(i) su
h that ‖MxX
+
i Xi∇ϕ‖2 ≤ 1. Then v veri�es v ≥ ϕ(x), whi
h isabsurd : indeed the value of u when entering the simplex was stri
tlysmaller than ϕ(x).This pro
essed ne
essarily lead to a solution � in the worst 
ase inthe S(1) simplex, whi
h 
on
ludes the proof.ordering The argument is the same as in dimension 2.

We thus have the following theorem :Theorem II.4.3.2The distan
e map 
omputed from the algorithm proposed in II.4.2 
onvergestoward the vis
osity solution of I.3.15 when the size of the simpli
es 
onvergesto 0.If the angles of the simpli
es have a maximal value θ, no obtuse angle 
anappear under a deformation by a tensor with anisotropy ratio less than
(tan(θ/2))−1. This lead to the following sample results.
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• In dimension 2 :Theorem II.4.3.3In the following 
ases, the distan
e map 
omputed from the algorithm propo-sed in II.4.2 
onverges toward the vis
osity solution of I.3.15 when the sizeof the simpli
es 
onverges to 0 :� Regular grid (�gure 2.9), and isotropi
 potentials (se
tion II.3) � or ani-sotropi
 potentials with prin
ipal 
omponents 
ollinear with the grid axis(se
tion II.3.6.)� 8 neighbors system (�gure 2.13), potentials with anisotropy ratio less than

(tan(π/8))−1 = 1√
2−1
≈ 2.4.� Neighborhood system 
onsisting of equilateral triangles, potentials with ani-sotropy ratio less than (tan(π/6))−1 =

√
3 ≈ 1.7.

• In dimension 3 :Theorem II.4.3.4In the following 
ases, the distan
e map 
omputed from the algorithm propo-sed in II.4.2 
onverges toward the vis
osity solution of I.3.15 when the sizeof the simpli
es 
onverges to 0 :� Regular grid and isotropi
 potentials (se
tion II.3.5) � or anisotropi
 poten-tials with prin
ipal 
omponents 
ollinear with the grid axis (se
tion II.3.6.)� S48a neighborhood system (
f. se
tion II.5.2), potentials with anisotropyratio less than ≈ 1.9.� S48b neighborhood system (
f. se
tion II.5.2), potentials with anisotropyratio less than (tan(π/6))−1 =
√

3 ≈ 1.7.� Neighborhood system 
onsisting of regular tetrahedron, potentials with ani-sotropy ratio less than (tan(π/6))−1 =
√

3 ≈ 1.7.II.5 Numeri
al ResultsII.5.1 Dimension 2This se
tion presents some results obtained by the algorithm in 2D. If needbe, we applied the algorithm to simpli
es with obtuse angles � in this 
asewe sele
ted the smallest solution satisfying both Cm and Cu.
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al Results 93Figure 2.22 shows results obtained with a 4 neighbors system (�gure 2.9),with anisotropi
 potentials non-
ollinear with the axis. Su
h a potential
reates obtuse angles in the deformed simpli
es, and the distan
e map doesnot seem to 
onverge toward their theoreti
al value.Figure 2.23 (top and middle) shows results in the same spa
e, obtained witha 8 neighbors system (�gure 2.13). In this 
ase, the algorithm 
onverges. Infa
t as long as the maximal anisotropy ratio is less than (tan(π/8))−1 ≈ 2.4,the deformed angles remain a
ute � whatever the dire
tion of the tensor is.On the opposite, if anisotropy keeps on in
reasing (bottom), obtuse anglesappear, and 
onvergen
e is lost.

Fig. 2.22 � Distan
e maps, level sets and shortest paths for a uniform aniso-tropi
 potential, obtained with a 4 neighbors system. Anisotropy ratio of thetensor is 2. Top : prin
ipal dire
tion is 
ollinear with e3π/4. Bottom : prin
ipaldire
tion is 
ollinear with e5π/6.
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Fig. 2.23 � Distan
e maps, level sets and shortest paths for a uniform ani-sotropi
 potential, obtained with a 4 neighbors system. Top : Anisotropyratio of the tensor is 2, prin
ipal dire
tion is 
ollinear with e3π/4. Middle :Anisotropy ratio of the tensor is 2, prin
ipal dire
tion is 
ollinear with e5π/6.Bottom : Anisotropy ratio of the tensor is 4, prin
ipal dire
tion is 
ollinearwith e5π/6.
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al Results 95II.5.2 Dimension 3In this se
tion, we present some results obtained by the algorithm in 3Dfor di�erent uniform potentials, and di�erent neighborhood systems.(�gure2.24). The �rst system (S8) 
onsists in 8 simpli
es. The se
ond (S48a) andthird one (S48b) are bigger, and 
onsists in 48 simpli
es.

8 simplexes 48 simplexes - a 48 simplexes - bxxx

Fig. 2.24 � Di�erent neighborhood systems in dimension 3The starting set is redu
ed to a single point. The algorithm is illustrated forthree potentials.
• an isotropi
 potential (�gure 2.25). In the S8 
ase, the s
heme 
orrespondsto the spe
i�
 
ase detailed in se
tion II.3.5.
• an anisotropi
 potential, 
ollinear with the axis � speeds in the di�erentdire
tions being 1,2 and 3 (�gure 2.26). In the S8 
ase, the s
heme 
orres-ponds to the spe
i�
 
ase detailed in se
tion II.3.6.In these 
ases, for all the neighborhood systems, 
onvergen
e is proved. Ho-wever, the 
hoi
e of a bigger neighborhood system in
reases the pre
ision.
S48a or S48b give qualitatively equivalent results.
• the same anisotropi
 potential, but non-
ollinear with the axis(�gure 2.27).Convergen
e is lost for S8. The last �gure shows result obtained for S48a∪
S48b � whi
h is not signi�
antly better than the ones obtained for the twosystems independently.
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Fig. 2.25 � Results for a uniform isotropi
 potential. Top : level sets for
S8, S48a and S48b. Bottom : mean relative error for the three systems, as afun
tion of distan
e from starting point
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Fig. 2.26 � Results for a uniform anisotropi
 potential, 
ollinear with theaxis. Top : level sets for S8, S48a and S48b. Bottom : mean relative error forthe three systems, as a fun
tion of distan
e from starting point.
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Fig. 2.27 � Results for a uniform anisotropi
 potential, non-
ollinear withthe axis. Top : level sets for S8, S48a, S48b and S48a ∪ S48b. Bottom : meanrelative error for the three systems, as a fun
tion of distan
e from startingpoint.
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omputation 99II.6 Other algorithms for shortest paths 
om-putationIn the 
ase of dimension 2 with a 
onstant potential (se
tion I.3.1.1), nu-merous methods have been developed to 
ompute distan
e maps. A re
entreview of main algorithms 
an be found in [57℄. Noti
e that in this 
ase, exa
talgorithms exists, with quasi-linear 
omplexity in the size of spa
e.It is also possible to use the idea of approximating 
ontinuous shortest pathsby dis
rete ones in order to 
ompute geodesi
s on manifolds represented byrandom point 
louds[201, 136℄.In dimension 2, [209℄ proposed an algorithm similar to Fast-Mar
hing almostsimultaneously. This algorithm was inspired by 
ontrol theory, and 
an begeneralised in dimension 3 [87℄. It is equivalent with Fast-Mar
hing in the
as of isotropi
 potentials, but does not 
onverge to the theoreti
al solutionin more general 
ases.Several variants of Fast-Mar
hing have been proposed in order to obtain
onvergent s
heme in presen
e of obtuse angles � or dually when anisotropyis important.In dimension 2, [97℄ proposed a method to suppress obtuse angles based onextending the neighborhood. However this extension in
rease running time,and its implementation seems to be tri
ky in bigger dimension. In [190℄,the authors propose a more general method, based on an extended front �the amount of extension depending on the anisotropy ratio. In the 
ase ofparametri
 manifolds, [197℄ proposes a fast method for extending the neigh-borhood.In dimension 3 � the deformed spa
e being sampled by a regular grid � [31℄proposed a generi
 splitting algorithm based on integer programming, whi
hextends the method proposed in [197℄.It is also possible to keep the Fast-Mar
hing general sket
h, but to allowupdates for points already in A. When the value of su
h a point is modi�ed, are
ursive 
orre
tion of its neighboring points is performed [104℄. For pra
ti
alpurposes, the in
rease of running time again depends on anisotropy ratio.While the 
onvergen
e is not guaranteed, the algorithm seems to behave well
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omputationfrom strongly anisotropi
 metri
s.Finally, a method was proposed for anisotropi
 potentials in dimension 3 onregular grids [161℄. It appears to be equivalent with our formulation in this
ase.II.7 Con
lusion, dis
ussionWe proposed a new presentation of Fast-Mar
hing algorithm. We emphasisedon the 
onnexions with Dijkstra algorithm. Our formulation is easily exten-ded to bigger dimensions, to anisotropi
 potentials, and to manifolds, andadmits a uni�ed proof.It would be of high interest to 
ompare and synthesise the algorithms forshortest paths 
omputations, in the 
ases when our s
heme is not 
onvergent.To our knowledge, su
h a work has not been done yet.



Chapitre IIITubular stru
tures segmentationusing shortest paths
Introdu
tionIn this 
hapter, we propose an appli
ation of shortest paths to the segmenta-tion of tubular stru
tures � mainly vessels in bi-dimensional medi
al images.After an introdu
tion (se
tion III.1), we propose to re
ast the 2D segmenta-tion problem as a geodesi
 
omputation over a 4-dimensional spa
e in se
-tion III.2. An additional s
ale dimension gives a

ess to the lo
al width ofthe vessels, and allows the dire
t extra
tion of the 
enterline of the vessel.A rotational dimension redu
es erroneous dete
tion when two vessels areoverlapping.In se
tion III.3, we then propose an appli
ation of this framework to a �ow-based vessel segmentation algorithm for opti
al 
orti
al imaging.Finally, in se
tion III.4 we show how to apply this framework to the extra
tionof networks of roads or vessels.ContentsIII.1 Tubular stru
tures segmentation . . . . . . . . . . 103III.1.1 State of the art . . . . . . . . . . . . . . . . . . . . 104III.1.2 Shortest paths methods . . . . . . . . . . . . . . . 105III.1.3 Overview of our method . . . . . . . . . . . . . . . 107III.2 A framework for tubular stru
ture segmentation 109101
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hapter is based on the work published in the following arti
les :
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tion of Tubular Stru
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e Registration and Flow-based Corti
al Vessel Segmen-tation applied to High Resolution Opti
al Imaging Data. [168℄
• an arti
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III.1 Tubular stru
tures segmentation 103III.1 Tubular stru
tures segmentationIn the sequel, we will denote by tubular stru
tures either roads in satelliteimages, or blood vessels in medi
al images (�gure 3.1). As we will see, bothshare 
ommon 
hara
teristi
s, whi
h allow their segmentation in one uni�edframework. While our method is originally designed for medi
al imaging ap-pli
ations, we will also show some of its results on high-resolution satelliteimaging.
Fig. 3.1 � Left : roads in a satellite image. Right : vessels in a medi
al image(
orti
al imaging)Blood Vessels Extra
ting tubular stru
tures is a 
entral problem in medi-
al imaging. Dete
tion of vessels and vessels networks in bi-dimensional me-di
al images is of primary interest to help medi
al diagnosti
. The extra
tionof an a

urate network allows one to 
ompute meaningful information su
has the lo
al width of the vessels and the 
onne
tivity of the networks from asingle planar observation. These problems are 
riti
al in retinal imaging[143℄for example, where they allow to diagnose pathologies su
h as Diabeti
 Reti-nopathy [47℄.Several problems arise to 
orre
tly perform the segmentation task. Manya
quisition modalities produ
e highly noisy images. Furthermore, vesselsusually exhibit 
omplex tree-like stru
tures that require a 
areful pro
es-sing. Another spe
i�
 di�
ulty in 2D imaging is the overlapping of vessels :two distin
t vessels in real anatomy 
an give rise to a 
rossing in the planeof the image (�gure 3.2).Roads
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Fig. 3.2 � A 
rossing of two blood vessels in a 
orti
al image.Road segmentation is of primary interest for the automati
 analysis of satel-lite images. Automati
 or semi-automati
 
artography mainly aims at upda-ting geographi
 information systems [194℄ � with appli
ations to road tra�
management or automated navigation systems.III.1.1 State of the artThe problem of tubular stru
ture extra
tion has re
eived 
onsiderable atten-tion in the 
omputer vision and medi
al imaging 
ommunities. The re
entreviews [100℄ and [44℄ give extremely good topi
al outlines of the domain. Asurvey on several retinal imaging spe
i�
 methods 
an also be found in [126℄.Several 
lasses of methods have been proposed to segment tubular stru
tures.They generally rely on the use of a lo
al dete
tor, post-pro
essed by a methodthat links lo
ally dete
ted stru
tures.Lo
al dete
tors allow to dete
t points belonging to tubular stru
tures orportions of tubular stru
tures depending on the modality of the image. Lo-
al dete
tors in
lude various methods : thresholding of images intensities,ridge or 
rest dete
tion [8, 164, 34℄, wavelets [89, 195, 41, 105℄, line dete
-tor for low resolution satellite imaging [61, 135℄, gabor �lters [170℄, di�e-rential operators [153, 112℄, vesselness measures [63, 53, 114℄ or mat
hing�lters [71, 36, 82, 18, 35, 115, 159℄ � re
ently 
ombined with learning pro-
esses [72℄.Many methods allow to link or post-pro
ess the lo
ally dete
ted points.Among 
lassi
al methods (inspired by ideas whi
h early arose in 
omputervision 
ommunity for edge dete
tion [33℄), thresholding [200℄, fusion pro-
esses [93, 76, 130, 218℄, region growing algorithms [58, 180, 220, 80℄, front



III.1 Tubular stru
tures segmentation 105propagation [128, 188, 50℄, or pixel 
lassi�
ation [41, 171, 193℄ te
hniques wereproposed. A
tive 
ontours [134, 151, 172℄, deformable models [142, 133℄, andmore re
ently geometri
 �ow based methods [212, 53℄ 
an also be used to �tmodels of tubular stru
tures or boundaries to the data.Geodesi
 based methods are another 
lass of methods allowing the linking oflo
al features � usually pixels intensities : the notion of shortest path provedto be e�
ient for the extra
tion of salient 
urves in 2D or 3D images, see forinstan
e [37℄. Geodesi
 
urves 
an also be used to extra
t tubular stru
tures
enterlines in 3D medi
al images, as proposed by [49℄ and by [177℄. In [120℄,the authors proposed to extend the shortest path 
omputation to a higherdimensional domain. They in
lude lo
al radius of the tubular stru
tures asan additional s
ale dimension in order to stabilize the 
omputations and tosele
t the 
enterline without any post-pro
essing.Another way of linking lo
al features is the 
lass of tra
king methods whi
hstart from a point belonging to a vessel (either user-de�ned, or dete
ted usinga ad-ho
 method with respe
t to the modality), and iteratively tra
k thevessel by analyzing the neighborhood of the 
urrent point in the dire
tion ofthe tubular stru
tures (look-ahead) [152, 111, 179, 67, 121, 224, 206, 45, 199,24℄. Kalman �ltering is also used to robustify the tra
king pro
ess [214, 223℄.While some of these methods 
an handle jun
tions, they usually fail to dealrobustly with 
rossings in the 
ase of bi-dimensional medi
al images.III.1.2 Shortest paths methods for road/vessels segmen-tationOur work was mainly inspired by shortest paths methods su
h as [37℄ and [120℄.Starting from an image I : [0, 1]2 → R, the basi
 idea is to 
ompute road/vesselsas shortest paths in the plane of the image. A potential must be designedsu
h that 
omputed shortest paths 
orrespond to a
tual road/vessels in theimages. Sin
e in most medi
al images, vessels appear to be darker than theba
kground, a natural idea is to design the potential as a non-de
reasing fun
-tion of the gray level � doing so, shortest paths are likely to follow dark areasof the images, i.e. vessels. This is illustrated in �g 3.3. The opposite holds for
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tures segmentation using shortest pathssatellite images, in whi
h roads are usually lighter than the ba
kground. The-refore in this 
ase, the potential will be designed as a non-in
reasing fun
tionof the Gray level. These methods 
an also be extended to 3D images, and
an thus be used to segment anatomi
 stru
tures e.g. in endos
opy.However, as illustrated in �gure 3.4, these methods usually fail to �nd the
enterline of the targeted vessel if the 
enterline does not 
orrespond to aminima of gray level along the se
tion of the tubular stru
ture. They are, aswell, unable to dire
tly re
over its radius, whi
h evaluation may have signi-�
an
e, e.g. in retinal imaging. Several attempts have been made to addressthis problem. One of them is to apply a Gaussian blurring to the image asa pre-pro
essing step, hoping that after this operation, the potential will belower at the 
enterline of vessels. It is however un
lear how the intensity ofthe blurring should be 
hosen, and how it a�e
ts the obtained segmentation.It is also possible to re�ne a �rst 
oarse segmentation using skeletization-like methods as a post-pro
essing [50, 208, 196, 77℄. Noti
e also that thereexist an important litterature 
on
erning 
omputation of medial axis (e.g.[192, 28℄), but su
h methods 
an usually only be applied to binary images.As we will show, our method will be able to 
ompute 
enterlines in a moreintrinsi
 way.An attempt to intrinsi
ally 
ompute 
enterlines and radii is proposed in [120℄.The authors propose to lift the 2D image to a 3D spa
e taking into a

ountradius of vessels. They design a lo
al dete
tor whi
h allows to evaluate thelikelihood of the presen
e of the 
enterline of a vessel of radius r at everypoint of the image. Then they 
ompute shortest paths in this 3D spa
e, thepotential being a non-in
reasing fun
tion of the likelihood. However, due totheir 
hoi
e of lo
al dete
tor, their method is extremely sensitive to initiali-zation and parameters. Their idea of using a radius spa
e was also adaptedin a Dijkstra-like framework [160℄.Noti
e that another algorithm inspired from this framework was proposedvery re
ently in [16, 17℄. After a prepro
essing of the image, it uses an aniso-tropi
 fast-mar
hing in su
h a 3D spa
e to a

urately segment vessels � whilenot handling interse
tions.
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Fig. 3.3 � Vessel segmentation using shortest paths. Top left : original retinalimage. Top middle : distan
e map 
omputed from the white point (graylevel was used as potential) and isodistan
e lines (red). Noti
e that the frontpropagates faster along the vessel. Top right : shortest paths 
omputed fromanother point of the vessel. Bottom : synthesis on the distan
e fun
tionelevation mapIII.1.3 Overview of our methodOur method goes one step further with respe
t to the method of [120℄. It liftsthe 2D image in a 4D radius and orientation spa
e using lo
al dete
tors ofvessels at di�erent orientations and s
ales. The use of 4D orientation spa
edisambiguates 
rossing 
on�gurations [91℄, and also allows to perform more
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Fig. 3.4 � Vessel segmentation using shortest paths � while the path is in
lu-ded in the vessel, the 
enterline is not 
orre
tly evaluated. Top left : originalretinal image. Top middle : distan
e map 
omputed from the white point(gray level was used as potential) and isodistan
e lines (red). Top right :shortest paths 
omputed from another point of the vessel. Bottom : synthe-sis on the distan
e fun
tion elevation mapstable and a

urate segmentation.Our method is independent from the lo
al dete
tor used, whi
h 
an be tunedpre
isely to the targeted appli
ation. It then uses a geodesi
 based formalismto 
ompute optimal paths in this 4D spa
e, leading to a robust global seg-mentation of vessels as detailed in se
tion III.2. Unlike methods whi
h relyon a post-pro
essing skeletization to 
ompute the 
enterlines of the vessels,our method dire
tly and naturally 
omputes both 
enterlines and radii of
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ture segmentation 109vessels.We propose an appli
ation of this framework to the segmentation of vessels in
orti
al imaging movies, using the �ow information to perform the dete
tionof vessels (se
tion III.3).Finally, in se
tion III.4, we propose to use this segmentation framework todesign an algorithm for network extra
tion. Based on a tra
king frameworkon extended neighborhoods, our algorithm handles di�
ult 
rossing 
on�gu-rations.III.2 A framework for tubular stru
ture seg-mentationIn this se
tion, we present our new framework for the segmentation of tubularstru
tures in a 4D radius and orientation spa
e.III.2.1 Lo
al Vessel ModelAn image will be treated as a 2D fun
tion I : [0, 1]2 → R. The lo
al geometryof a vessel is 
aptured with a vessel model M(x) ∈ R for x = (x1, x2) ∈ Λ =

[−Λ1,Λ1]× [−Λ2,Λ2]. This model is a 2D pattern that in
orporates our priorknowledge about both the 
ross se
tion of the vessels and the regularity ofvessel.The prior on the 
ross se
tion of the vessel is in
luded by 
onsidering models
M(x1, x2) = m(x2) that only depends on a 1D pro�le m (�gure 3.5). Theprior on the regularity of the vessels 
orresponds to the ratio Λ1/Λ2 of thehorizontal and verti
al dimensions of the model.Model 
ross-se
tion for vessels. A 1D pro�le adapted to both 
orti
aland opti
al imaging and retinal imaging is de�ned as

m(x2) =

{

1 for |x2| > Λ2/2,

exp(−α
√

(1/2)2 − (x2/Λ2)2) otherwise. (III.2.1)This model en
ompasses medi
al knowledge about the light re�exion aroundblood vessels in 
orti
al imaging. The image intensity inside a vessel is as-
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−Λ1

−Λ2

Fig. 3.5 � Left : intensity pro�le along a se
tion. Right : a vessel modelsumed to result from a light absorption (with 
oe�
ient α) proportional tothe vessel width at this point. It is also widely used in the retina image
ommunity [36℄.The value α ≈ 0.05 was evaluated from a set of typi
al 
orti
al images.However, se
tion III.2.8.2 shows that our vessel extra
tion method is robustwith respe
t to approximate 
hoi
es of this absorption parameter.Model for road extra
tion. A typi
al road in satellite imaging has a slowvariation of intensity along a se
tion. It is e�
iently 
aptured by a binarymodel de�ned as
m(x2)

def.
=

{

0 for |x2| > Λ2/2,

1 otherwise. (III.2.2)Regularity sele
tion. The ratio Λ1/Λ2 of the model dimensions a
ts as aprior on the regularity of typi
al vessels. The more typi
al vessels are 
urved,the smaller Λ1/Λ2 should be. Also, robustness to noisy images for
es to usea model with a large enough area Λ1 × Λ2. The value of (Λ1,Λ2) = (1, 2)is used in our numeri
al experiments. This 
hoi
e is further dis
ussed in thenumeri
al experiments se
tion.To over
ome the inherent di�
ulties of the 2D dete
tion problem, additionals
ale and orientation dimensions are introdu
ed to in
rease the dete
tability
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ture segmentation 111of vessels.III.2.2 Rotated and S
aled ModelsThe normalized pattern M(x) is rotated and s
aled to mat
h the varyingorientation and width of vessels. Beside the 
hoi
e of the pattern 
ross se
tion
m and the dimension Λ1 ×Λ2 of the model M(x), the s
aling of Λ(r) with ris another avenue to introdu
e some prior about vessels in the image. Smalls
ales 
orti
al and retinal vessels are less regular than large s
ale vessels. Wethus 
hose to s
ale the dimensions of the model Λ(r) = rΛ linearly withthe radius r. This 
auses thin vessels to be dete
ted using a �ner 
orrelationanalysis.The warped model Mr,θ(x) for x ∈ Λ(r, θ) = RθΛ(r) is de�ned as

∀x ∈ Λ(r, θ), Mr,θ(x)
def.
= M(R−θ(x/r)) (III.2.3)where Rθ is the planar rotation of angle θ.Figure 3.6 shows examples of models de�ned with (III.2.1) and (III.2.2) thatare rotated and s
aled a

ording to (III.2.3).

θ

r r

θFig. 3.6 � Vessel models (left) and roads models (right) for di�erent orien-tations and s
ales. Here, Λ1/Λ2 = 1/2 and m(.) is given by (III.2.1).
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tures segmentation using shortest pathsIII.2.3 S
ale/Orientation LiftingThe image I is lifted in a 4D spa
e by adding a s
ale and an orientationdimension. Let Ω be de�ned by
Ω

def.
= [0, 1]2 × [rmin, rmax]× [0, π) (III.2.4)the last dimension being periodi
. Ω is thus a 4-dimensional manifold.We 
all lifting the fun
tion F 
omputed as the normalized 
ross-
orrelation [73℄between the image and the lo
al model (III.2.3)

∀ω = (x, r, θ) ∈ Ω, F (ω)
def.
= NCCΛ(r,θ)(Mr,θ(·), I(x+ ·)) (III.2.5)where I(x + ·) is the image translated by x, NCCA(f, g) is the normalized
ross-
orrelation between f and g over the domain A, de�ned by :NCCA(f, g)

def.
=

∫

A
(f − f̄)(g − ḡ)

√
∫

A
(f − f̄)2

√∫

A
(g − ḡ)2

(III.2.6)where h̄ = (
∫

A
h)/|A|, |A| being the area of A.This lifting separates real 3D vessels that overlaps when proje
ted at thesame lo
ation by the imaging system but have di�erent orientations.

rmin and rmax are respe
tively set as the minimum and maximum values ofthe vessels radius one wishes to dete
t in the image.The value F (x, r, θ) ranges from −1 to 1 and measures the likelihood ofobserving a vessel at a given lo
ation x with a width r and an orientation
θ. The normalization of the dete
tor makes it invariant under to intensityvariations that o

urs in medi
al images due to the elevation variation of thevessels and the imperfe
tion of the imaging system. Adding a s
ale dimensionyields a robust and regularized estimation of the radius and the 
enter ofvessels.Figure 3.7 shows an example of a 
orti
al image where orientation lifting is
ru
ial to distinguish lo
ally between orientations.Numeri
al 
omputations. A medi
al image is a
quired on a on dis
retegrid of n × n pixels. The 4D lifting is 
omputed for nr radii evenly spa
edin [rmin, rmax] and nθ orientations evenly spa
ed in [0, π), with nr = 12 and
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x

y

x

θ

y

θ = π/2

θ = 0Fig. 3.7 � left : An original 2D image. right : Its 4D lifting (�xed radius),ranging from -1 (bla
k) to 1 (white). White values indi
ate likely positionsand orientations of vessels.
nθ = 12 in the experiments. This requires O((rmaxn)2n2nrnθ) operations with
rmax ≪ 1 and nr, nθ ≪ n.III.2.4 Lifted PotentialThe 4D lifting (III.2.5) de�nes an isotropi
 potential ρ over the 4D domain
Ω

∀ω ∈ Ω, ρ(ω)
def.
= max(1− F (ω), ǫ). (III.2.7)The parameter ǫ prevents the potential to vanish and is set to ǫ = 10−3 inthe numeri
al tests.This potential en
odes lo
al information about the presen
e of a vessel at agiven position, s
ale and orientation.Noti
e that this 
hoi
e is somewhat arbitrary. Any non-in
reasing fun
tionof F 
ould be 
onsidered.III.2.5 Distan
e Map and Geodesi
 ComputationThe length of a lifted 
urve γ : [0, 1] → Ω over the lifted domain is de�nedas

LF (γ)
def.
=

∫ 1

0

ρ(γ(t))‖γ′(t)‖dt. (III.2.8)
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tures segmentation using shortest pathswhere the length of the speed ve
tor v = γ′(t) = (vx, vr, vθ) is
‖v‖2 def.

= v2
x + λv2

r + µv2
θ , (III.2.9)

(λ, µ) being normalizing 
onstants that 
ontrols the penalty on s
ale andorientation variations along the vessels in the images. In pra
ti
e, as wewill demonstrate in the numeri
al experiments se
tion, we observed strongrobustness with respe
t to the 
hoi
e of (λ, µ).Given a set A ⊂ Ω of seeds points and a set B ⊂ Ω of ending points, ashortest lifted 
urve γ∗(t) ⊂ Ω joining A to B is de�ned as a shortest pathfor the metri
 LF

γ∗(A,B)
def.
= argmin

γ∈C(A,B)

LF (γ), (III.2.10)where C(A,B) is the set of 
urves γ su
h that γ(0) ∈ B and γ(1) ∈ A. The
orresponding geodesi
 distan
e is dF (A,B) = LF (γ∗). This de�nition 
anbe spe
ialized to a single starting point A = {ω0} and/or to single endingpoint B = {ω1} to de�ne the geodesi
 distan
e between points and/or sets,e.g. dF (ω0, ω1)
def.
= dF ({ω0}, {ω1}).Therefore, we are in exa
tly in the framework of shortest paths on a Rieman-nian manifold introdu
ed in se
tion I.3.1.6.The tensor asso
iated with the potential is proportional to








1 0 0 0

0 1 0 0

0 0 λ 0

0 0 0 µ






i.e. its prin
ipal 
omponents are aligned with the 
anoni
al basis of the spa
e.Furthermore, up to the periodi
ity of the θ dimension, we 
an assume that

Ω is a 
uboid of R
4.

Ω is dis
retized as a grid of N def.
= n2nrnθ, where extra links are set bet-ween points (i, j, r, 0) and (i, j, r, (nθ − 1) π

nθ
) and therefore we 
an apply theframework developed in se
tion II.3.6 to 
ompute shortest paths.A �rst order Euler-s
heme was used to perform the gradient des
ent � the-refore 
omputing γ∗ with sub-pixel a

ura
y.
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ture segmentation 115III.2.6 Shortest Paths and 4D 
urvesA 4D 
urve c(x, x′) between two points x, x′ ∈ [0, 1]2 is 
omputed as a 4Dgeodesi
 in Ω between the 4D lifted sets A(x) and A(x′) de�ned as
A(x(′))

def.
=
{

(x(′), r, θ) \ r ∈ [rmin, rmax], θ ∈ [0;π)
}

. (III.2.11)The 4D 
urve is then de�ned as
cx,x′

def.
= γ∗(A(x),A(x

′

)). (III.2.12)This 4D 
urve 
ontains three 
omponents cx,x′(t) = (x̃(t), r(t), θ(t)). Thepath x̃(t) ⊂ [0, 1]2 is the a
tual 
enterline over the image plane, whereas r(t)and θ(t) give the lo
al width and orientation of the vessel, see Figure 3.8.
t

t

θ(t)

r(t)

Fig. 3.8 � Left : 
enterline extra
tion of a vessel in a 
orti
al image. Startingpoint : white square. Ending point : bla
k square. Right : 
orrespondingorientation θ(t) and radius r(t).
III.2.7 Another interpretationDue to the stru
ture of the targeted images, we observed that the dire
tionof a shortest path proje
ted in the image plane is approximately equal to the
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urrent angular position θ of a 
urve. Up to a renormalization, vθ is then the
urvature of the proje
tion of γ in the image plane.The length of a lifted 
urve is written
LF (γ) =

∫ 1

0

ρ(γ(t))
√

v2
x + λv2

r + µv2
θdt (III.2.13)and then its minimization leads to 
urves with both small length and 
urva-ture � whi
h is somewhat similar to an optimization in a Sobolev spa
e.III.2.8 Evaluation of the Geodesi
 CenterlinesIn this se
tion, we present some results obtained by our method.III.2.8.1 A

ura
y and robustness to noise and parameters 
hoi
eThe a

ura
y of the 
enterline extra
tion is 
ompared on syntheti
 data tothe two other methods mentioned in the introdu
tion :

• the method of [39, 38℄, in whi
h a 2D metri
 is 
omputed from an imageintensity blurred with a Gaussian �lter. The �ltering helps to re-
enter thegeodesi
 sin
e the smoothed image exhibits a lo
al maxima around the
enter of the vessels, at the 
ost of a loss of spatial resolution,
• the method of [120℄, in whi
h a 3D (spa
e+s
ale) metri
 is 
omputed. Allthe parameters of this 3D model are optimized to give the best results.In the experiments, our method was used with an absorption parameter α =

0.1, whi
h is not optimized to �t the α of all ben
hmark images.The pre
isions of the three algorithms are tested on several phantoms images.This phantoms images are build from �ve 
enterlines and radii analyti
alforms � thus with sub-pixeli
 a

ura
y. The 
ross se
tion 
orresponds to themodel (III.2.1) with parameter α = 0.01, α = 0.1 and α = 1. An additiveGaussian white noise with various amplitudes are added to the phantoms.Ten phantoms are generated for ea
h 
ondition, and ea
h noise level. Thisleads to a total database of about 3000 images. Figure 3.9 shows some of theobtained phantoms.For ea
h experiment, the true starting and ending points of ea
h phantomare used, as well as the true starting and ending radii for the [120℄ method.
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ture segmentation 117Default parameters Λ1/Λ2 = 0.5, nθ = 12, nr = 12, µ = 1 π
ntheta

and λ =

1 rmax−rmin

nr
were used for our algorithm. Its sensibility with respe
t to this
hoi
e will be dis
ussed.

Fig. 3.9 � Some of the phantoms used in our ben
hmark (basi
 intensitiesrange from 0 to 1), shown here with a spatially independent Gaussian noiseof varian
e 0.15.The extra
ted 4D 
urve c(t) = (x̃(t), r(t), θ(t)) is 
ompared to the groundtrust c∗ using the following errors :
{ ErrorC(c)2 =

∫ 1

0
‖x̃(t)− x̃∗(t∗)‖2dtErrorR(c)2 =

∫ 1

0
|r(t)− r∗(t∗)|2 dt

(III.2.14)where t∗ is su
h that x̃∗(t) is the ground truth 
enterline point 
losest to
x̃(t), and where r is the radius 
omputed by the method (proposed methodand [120℄ only), and r∗ the ground truth radius.Figures 3.10,3.11,3.12,3.13 and 3.14 shows ErrorC(c) and ErrorR(c) 
urvesfor several syntheti
 images as a fun
tion of the noise level.Using the 3D spa
e+s
ale lifting [120℄ produ
es results of varying quality,and requires a 
areful tuning of the parameters to a
hieve the optimal errorrate. [39, 38℄ with an optimal smoothing generally provides a pre
ise eva-luation of the 
enterline lo
ations, but without any evaluation of the lo
alradius. Noti
e also that the smoothing parameter a
hieving the best resultvaries from one phantom to another. Our method provides both positions andradii with more robustness and a

ura
y � and outperforms other existingmethods, even when the model is not pre
isely tuned.Furthemore, �gure 3.15 shows an experiment where start and end points havebeen shifted two pixels to the right. Due to the slow variation of intensity
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tures segmentation using shortest pathsalong the se
tion of the ben
hmark, the 2D method is sensitive to this shift,while the 4D method re
enters the paths, and does not su�er harshly fromthe shift.Robustness to Λ1

Λ2
Figure 3.16 shows the in�uen
e of the 
hoi
e of Λ1

Λ2
onthe results. Λ1

Λ2
= 0 
orresponds to a model redu
ed to a segment. The 
hoi
eof low values of Λ1

Λ2
allows to evaluate radius with a good a

ura
y when noiselevel is low, but leads to some instability. On the opposite, a too importantvalue 
hoi
e leads to pre
ision lost. Λ1

Λ2
= 0.5 is a good 
ompromise.Robustness to dis
retization Figure 3.17 demonstrates the e�e
t of the
hoi
e nθ � i.e. the number of angles used in the dis
retization. It appearsthat for low nθ, the quality of the segmentation depends on whether or notthe angle of the vessel is approximately present in the dis
retization of [0, π).We thus performed quality tests for 31 rotations of the ben
hmarks (of angles

{i/10}i=1..31). Low values of nθ lead to a higher variability in the segmenta-tion, depending on whether or not the vessel dire
tion is aligned with one ofthe dis
retized θ value. Overall the algorithm is quite robust to the 
hoi
e ofthis quantity.A similar experiment was run for nr (�gure 3.18). Although the 
enterlinedete
tion is robust to 
hoi
es of small nr, the radius evaluation is extremelysensitive to it.Robustness to speed parameters We performed experiments to assesthe dependen
e of the algorithm with respe
t to the 
hoi
e of the angularspeed µ (�gure 3.19) and radius speed λ (�gure 3.20). Centerline segmen-tation shows little sensitivity with respe
t to the 
hoi
e of speed parameterin angular dire
tion � radius estimation is slightly a�e
ted is the speed isto low. The 
hoi
e of speed parameter in radius dire
tion seems to be moreimportant : a too important value will lead to good results for radius estima-tion when noise level is low, but will show a more unstable behavior whenthe noise in
reases. λ = 0.5 rmax−rmin

nr
seems to be a good 
hoi
e.In all the subsequent se
tions, the results were obtained with parameters

Λ1/Λ2 = 0.5, nθ = 12, nr = 12 (rmin = 1 and rmax = 6.5), λ = 0.5 rmax−rmin

nr
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ture segmentation 119and µ = 0.1 π
nθ
. The 
hoi
e of a low µ is motivated by the ne
essity of having aspa
e Ω �wide enough� in angular dire
tion in order to disambiguate 
rossing
on�gurations.III.2.8.2 Evaluation on Syntheti
 CrossingsThe 4D lifting (III.2.5) is 
hallenged by testing the extra
tion of a 
urvedvessel with a self 
rossing. Figure 3.21 shows that the vessel 
urve is not
orre
tly extra
ted with a metri
 that does not take into a

ount the lo
alorientation. A 2D purely spatial metri
 or a 3D spa
e+s
ale metri
 extra
tsa 
urve that does not 
apture the 
orre
t topology of the vessel. Our 4D
enterline position+s
ale+orientation favors the extra
tion of a longer 
urvethat is both well 
entered and geometri
ally faithful to the true vessel.III.2.8.3 Evaluation on Medi
al/Satellite ImagesFigure 3.22, left, shows vessels extra
tion for a 
omplex opti
al imaging ofthe 
ortex with several bran
hes and interse
tions. The 
enterlines 
omputedfrom di�erent ending points are overlapping.Figure 3.22, right, shows vessels extra
tion on a retinal image from theDRIVE database [198, 143℄. The starting point is shown with a white squareand several end points are shown with bla
k squares. The 
rossings in thisretinal image show the interest of the 4D lifting, that allows to 
orre
tlydete
t the geometry of the vessels.Figure 3.23 shows a similar experiment in a satellite image.In �gure 3.24, two initial seeds were provided, on the roads going down andto the right from the 
rossing. Shortest paths were then 
omputed from thetwo others segments of roads. The 
rossing is handled 
orre
tly, whi
h 
annot be done by the other methods whi
h do not use an orientation lifting.Figure 3.8 shows the estimated radius r(t) and orientation θ(t) for a vesselextra
ted in a 
orti
al image. Both the 
enterline position, the radius andthe orientation are 
omputed with sub-pixel a

ura
y.The pre
ision of our 4D lifting method is evaluated on the DRIVE data-base [198, 143℄. Approximate ground truth 
enterlines positions and radiiare 
omputed from the binary masks available with the database. Figure
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tures segmentation using shortest paths3.25, shows the binary segmented vessels together with the ground trust 
en-terline position and boundaries (top and middle), as well as the result of oursegmentation algorithm (bottom).The three geodesi
 extra
tion algorithms are applied to these three imagesbetween the indi
ated starting and ending points. Table III.1 report the 
en-terlines position and radii errors ErrorC(γ) and ErrorR(γ) for ea
h method.For the 
enterline extra
tion, due to the la
k of pre
ision of the ground truth,there is no signi�
ant di�eren
e between the proposed 4D lifting method andthe spa
e only geodesi
 extra
tion with smoothing of the metri
. The 3Dspa
e+s
ale lifting [120℄ method showed unstable behavior with respe
t toits initialization and parameters, whi
h had to be 
hosen 
arefully - for these
ond image, we did not manage to �nd parameters giving a 
orre
t result.Our 4D lifting method is also more pre
ise for the radii estimation than the3D lifting. DRIVE 1 DRIVE 2 DRIVE 3ErrorC ErrorR ErrorC ErrorR ErrorC ErrorR2D metri
 0.40 - 0.38 - 0.30 -3D metri
 1.33 1.67 3.13 3.31 0.53 1.904D metri
 0.31 0.43 0.35 0.44 0.40 0.47Tab. III.1 � Centerlines positions ErrorC and radii ErrorR estimation errorson retina images for the three di�erent methods.
III.2.9 Con
lusion and Dis
ussionWe proposed a reliable algorithm to segment tubular stru
ture in bi-dimensionalimages, between user provided points. Experiments on real and syntheti
 datashow the a

ura
y and the robustness of the proposed methods.Furthermore, as it is widely independant of the lo
al dete
tor we used, it isvirtually appli
able to other modalities. As an example, it 
ould be interestingto 
onsider less naive roads dete
tors than the simple one that was used inour work.
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ture segmentation 121Questions remains about the 
hoi
e of the metri
 and of the potential fun
-tion. Although we did not noti
e high sensibility with respe
t to the 
hoi
eof any reasonnable potential in our experiments, it would be interesting tounderstant how design it in order to rea
h an optimal segmentation for thetargeted appli
ation. Metri
 
hoi
e 
ould also be used for example to favorfaster rotations for smaller vessels. Tuning it would require a 
areful statis-ti
al analysis of a database of manually segmented tubular stru
tures.Theoreti
ally, this framework 
ould be extended to tri-dimensional images,but the lifting would lead to a 6 or 8 dimensional spa
e � depending if these
tion of a vessel is modelised by a 
ir
le (1 parameter) or an ellipse (3parameters) � whi
h is likely to be 
omputationally untra
table. Moreover,as there is no need of orientation disambiguation in tri-dimensional images,it is not 
lear that this algorithm would lead to improvments with respe
t toexisting methods. However, as explained in IV.2, several tra
ks may be fol-lowed in order to redu
e 
omputational 
omplexity in that 
ase, for example
omputations on a partial volume or approximation of the update step.
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Fig. 3.10 � Centerlines positions and radii estimation errors for the phantom1 of Figure 3.9.Top, middle and bottom row respe
tively show results for phantoms genera-ted with parameters α = 0.01, α = 0.1 and α = 1.Left 
olumn : error ErrorC(γ) (in pixel) for the three methods, as a fun
tionof the noise level (100σ where σ is the independent Gaussian noise varian
e).(red : 4D metri
 (spa
e+s
ale+orientation), green : 3D metri
 (spa
e+s
ale)[120℄, blue : 2D metri
 with di�erent pre-smoothing [39, 38℄)Right Column : Radii error ErrorR(γ) (in pixel) for the 3D and 4D methods,as a fun
tion of the noise level.
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Fig. 3.11 � Centerlines positions and radii estimation errors for the phantom2 of Figure 3.9. See 3.10 for legend.
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Fig. 3.12 � Centerlines positions and radii estimation errors for the phantom3 of Figure 3.9.See 3.10 for legend.
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Fig. 3.13 � Centerlines positions and radii estimation errors for the phantom4 of Figure 3.9.See 3.10 for legend.
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Fig. 3.14 � Centerlines positions and radii estimation errors for the phantom5 of Figure 3.9.See 3.10 for legend.
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Fig. 3.15 � Centerlines positions and radii estimation errors for the phantom2 of Figure 3.9 with α = 0.01, with start and end points shifted two pixelson the right. Compare results with 3.11 (top left)
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Fig. 3.16 � In�uen
e of the 
hoi
e of Λ1

Λ2
: experiments for ben
hmark 1.Di�erent 
urves are for several values of Λ1

Λ2
(dark blue → 
yan → red). TopLeft : mean 
enterline errors. Bottom Left : standard deviation of 
enterlineerrors.Top Right : mean radius errors. Bottom Right : standard deviation ofradius errors.
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Fig. 3.17 � In�uen
e of the 
hoi
e of dis
retization step in angular dire
tion.Results for phantoms 1 (Top row) and 5 (Bottom row) with noise 0.4. x-axis :number of angles of the dis
retization. Left : 
enterline errors, bars representstandard deviation. Right : radius errors, bars represent standard deviation.
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Fig. 3.18 � In�uen
e of the 
hoi
e of dis
retization step in radius dire
tion.Results for ben
hmark 1 (Top row) and 4 (Bottom row) with noise 0.4. x-axis : number of radius of the dis
retization. Left : 
enterline errors, barsrepresent standard deviation. Right : radius errors, bars represent standarddeviation.
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Fig. 3.19 � In�uen
e of the 
hoi
e of speed in angular dire
tion. Results forben
hmark 1 (Top row) and 5 (Bottom row) as a fun
tion of noise level. Left :
enterline errors. Right : radius errors.
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Fig. 3.20 � In�uen
e of the 
hoi
e of speed in radius dire
tion. Results forben
hmark 1 (Top row) and 4 (Bottom row) as a fun
tion if noise level. Left :
enterline errors. Right : radius errors.

2D metri
 [39, 38℄ 3D metri
 [120℄ our method : 4D metri
(position) (position+s
ale) (position+s
ale+orientation)Fig. 3.21 � Comparison of the 2D [39, 38℄, 3D [120℄ and 4D lifting (ourmethod) when en
ountering a self-
rossing.
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Fig. 3.22 � Centerlines positions and radii extra
tion of vessels in a 
orti
alimage (left), and in a retinal image (right).

Fig. 3.23 � Centerlines positions and radii extra
tion of roads in a satelliteimage.
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Fig. 3.24 � Centerlines and radii extra
tion of roads for the three testedmethods. Two starting points (white squares/
ir
les) and two ending points(bla
k squares/
ir
les) were provided for ea
h method. From top to bottom :2D, 3D, 4D methods.

Fig. 3.25 � Binary segmented images from the DRIVE database, togetherwith the extra
ted ground trust. middle : 
orresponding images with ground-truth 
enterline and boundary and initial and ending points. bottom : 
en-terlines positions and boundaries 
omputed with our method.
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tion 135III.3 Appli
ation to �ow-based extra
tionIn this se
tion, we present an appli
ation of our shortest paths vessels seg-mentation algorithm to the analysis of 
orti
al opti
al imaging.III.3.1 Introdu
tionMagneti
 Resonan
e Imaging (MRI) is a widely used medi
al imaging moda-lity, dis
overed in the�1970's [11, 129℄. It allows the tri-dimensional imagingof several tissues with good 
ontrast and high spatial de�nition, while beingnon-invasive. Its basi
 prin
iple is to put a subje
t in a high intensity magne-ti
 �eld, therefore aligning the protons in water mole
ules with the �eld. Ase
ond �eld is then applied brie�y, 
hanging the alignment of protons. Whenrelaxing to the alignment indu
ed by the �rst magneti
 �eld, the protons emita signal in radio frequen
y, whi
h 
an be dete
ted. The use of non-
onstantmagneti
 �elds allows one to lo
ate the spatial position from whi
h the signalwas emitted. Furthermore, the intensity of this signal is related to propertiesof the tissues from whi
h it originates. This leads to a tri-dimensional imageof an organ, usually dis
retized in voxels whose resolution 
an be under 1mm3(�gure 3.26).

Fig. 3.26 � A sagittal sli
e of my head, a
quired with MRI.Fun
tional Magneti
 Resonan
e Imaging (fMRI) [109, 146℄ is a variant ofMRI for the imaging of neural a
tivity. When neurons in an area of braina
tivate, one 
an observe a subsequent in
rease in blood �ow in the area,aiming at providing glu
ose and oxygen to the neurons. This phenomenon is
alled Hemodynami
 Response. fMRI is able to dete
t this response, through



136 Tubular stru
tures segmentation using shortest pathsthe dete
tion of 
hanges in oxyhemoglobin 
on
entration, and 
an thus issuean a
tivation map of brain. Due to its high spatial pre
ision, fMRI has be
omein a few years one of the most widely used te
hnique for fun
tional imagingof the brain.However, fMRI does not dire
tly measure the neural ele
tri
 a
tivity, butthe hemodynami
 response. There is therefore a strong need for relatinghemodynami
 response to neural a
tivity [32, 48℄.Moving red blood 
ells (RBCs) 
an be dire
tly "seen" by opti
al imagingof the 
ortex at adequate wavelengths [26℄, allowing to quantify blood �owin vas
ular networks [75℄. However, to a
hieve a robust, fast and reliabledetermination of the small, eventually a
tivity-evoked 
hanges in 
erebralblood �ow (CBF), some obsta
les still have to be over
ome [211℄.In parti
ular, vessels segmentation is a highly time-
onsuming task if relyingon user input, but is a 
hallenge for standard automati
 methods due to theweakness of 
ontrast of small vessels and ambiguities posed by 
rossing andbran
hing points.Here, we present a new algorithmi
 approa
h based on our shortest pathalgorithm, allowing to segment vessels by using �ow information rather thananatomi
al information.III.3.2 Pre-pro
essingIII.3.2.1 Sequen
e RegistrationImages were a
quired at 200Hz with a CCD, upon illumination at 570nm,from the primary visual 
ortex of an awake ma
aque who had a 1
m2 trans-parent 
ranial window 
hroni
ally implanted above the area of interest. Eventhough, during the experiment, the monkey's head is thoroughly stabilized,the 
urvature of the 
orti
al surfa
e, its position with respe
t to the 
ameraand the exa
t morphology of the vas
ulature 
hange slightly under the ef-fe
ts of the heart-beat and the monkey's body movements. These movements
an be as large as a few pixels, and 
an be relatively fast (until hundred ofHz). An inter-frame spatial mat
hing step is therefore required to be able tofurther pro
ess ea
h image-sequen
e. [225℄ o�ers a re
ent survey of severalimage su
h image registration methods.
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p

pi

I0

IiFig. 3.27 � Left : Blue : SIFT points on a part of the �rst frame of the se-quen
e. Red : 
orresponding Delaunay triangulation. Right : Registration betweentwo frames : a point belonging to a triangle in the �rst image is registered to thepoint with same bary
entri
 
oordinates in the 
orresponding triangle of the se
ondimage.S
ale-bar is 500µm in all �guresWe used a ad-ho
 features-based method for registering a 
omplete sequen
e,based on S
ale-Invariant Feature Transform (SIFT) des
riptors [122℄. SIFT isa state-of-the-art fast and robust algorithm for extra
ting and 
hara
terizingsalient features from an image whi
h 
an deal with several 
omputer visionproblems. For ea
h image, the SIFT algorithm yields a number (
ontrolled bya threshold) of 2D points p with sub-pixel pre
ision, along with a des
riptorve
tor vp in R
128 for ea
h point p, whi
h represents the image around thedete
ted point. The main feature of the SIFT dete
tor is that the pointsand des
riptors obtained are invariant with respe
t to s
ale, rotation, andillumination 
hanges.Our method 
an be des
ribed by the following steps :1. Features Dete
tion : the SIFT algorithm is applied to ea
h image of thesequen
e, to dete
t 
hara
teristi
 points along with their des
riptors(�gure 3.27) after images have been smoothed with a narrow Gaussian�lter (∼ 2 pixels) to remove high spatial frequen
y 
omponents.2. Features Mat
hing : we use one frame (usually the �rst, 0) as a referen
eand mat
h its SIFT keypoints to those of other frames. Using somethreshold δ, we keep from the set of these keypoints only those p0
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h mat
h with one and only one keypoint pi (||vp0 , vpi
||2 < δ) inevery other frame i. Noti
e that no spatial information is used duringthis step : only the points' des
riptors are used during the mat
hingpro
ess, not their positions. This potentially allows for large movementsbetween frames.3. Full Image Mat
hing : the third step is intended to extend the mat
hingof the 
hara
teristi
 points to the whole spa
e. For this purpose, we �rstapply Delaunay triangulation [25℄ to form a meshM0 whi
h verti
es arethe SIFT points of the referen
e frame (�gure 3.27). Then ea
h triangle

(p0a, p0b, p0c) of this mesh is mat
hed to its 
ounterpart (pia, pib, pic) inea
h other image i using an a�ne transformation (�gure 3.27).However naive, this method seems to be fast and to be well suited for theregistration of almost un
hanging (up to a rigid transform) images.III.3.2.2 Beer-Lambert 
orre
tionThe Beer-Lambert law predi
ts the measured signals as a fun
tion of theabsorption of the illumination light by the tissues. If we separate the ab-sorption by the RBCs from the one from vessels or other 
orti
al tissues, weget I ≈ I0e
−α2de−β2d′ , where I is the re�e
ted light intensity, I0 the in
identlight, α the absorption 
oe�
ient of vessel, d the width of the vessel at the
onsidered point, β the absorption 
oe�
ient of the RBCs and d′ its width.Thus the signal of interest - e.g. the presen
e of RBCs 
an be extra
ted byapplying the following �lter to ea
h point of the sequen
e : d′ ∽ −log( I

Ibase
)where Ibase = I0e

−α2dFor ea
h point Ibase is evaluated as a robust minimal intensity throughoutthe registered sequen
e. Su
h a normalization using the minimal intensityinstead of average intensity [211℄ enhan
es the signal from RBCs motion inthe vessels without in
reasing the noise outside.III.3.3 Flow-based vessels extra
tionBlood-�ow based image segmentation To adapt the shortest path for-malism to a �ow-based extra
tion of vessels, we repla
e the light-intensity
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θ

t

l

l

p

I

Fig. 3.28 � Extra
tion of the space− time image. Left : neighborhood of p in thedire
tion θ. Right : 
orresponding space− time image.(gray level) information by a value depending on the presen
e � or absen
e �of blood-�ow. For a point p and an orientation θ, we determine whether �owfollowing the dire
tion θ is present at p throughout the sequen
e. To a
hievethis, we �rst extra
t a 2-dimensional space− time image from a small neigh-borhood of p in our sequen
e of frames in dire
tion θ (�gure 3.28), yieldingan image I(l, t). Using the same stru
ture tensor formalism as in [211℄, we
ompute the following tensor :
T (x, θ, t) =

〈(
∂I

∂t
,
∂I

∂l

)(
∂I

∂t
,
∂I

∂l

)T
〉As noted in [211℄, this orientation of this tensor 
an be used to lo
ally eva-luate the in
lination of stripes in the image, and therefore the speed of �ow.Furthermore, the ratio between its two eigenvalues (i.e. its anisotropy) givesan indi
ator of the presen
e of �ow in that dire
tion � the more the tensoris anisotropi
, the more likely there is signi�
ant �ow.Let T̄ (x, θ) be the mean of this tensor over the time sequen
e. We propose touse the ratio ρ(x, θ) between the two eigenvalues of T̄ (x, θ) as an indi
ationof the presen
e of �ow at point x in dire
tion θ.Let Ω be de�ned by

Ω
def.
= [0, 1]2 × [rmin, rmax]× [0, π) (III.3.1)We propose the following approa
h inspired by the work presented in se
tionIII.2.3 to segment vessels based on �ow information as shortest paths.



140 Tubular stru
tures segmentation using shortest pathsAssuming that the anisotropy of the tensors is 
onstant a
ross the se
tion ofa vessel, we propose the following model for anisotropy, for a vessel of width
Λ2 :

m(x2)
def.
=

{

1 for |x2| > Λ2/2,

0 otherwise. (III.3.2)This assumes that the anisotropy is 
onstant inside and outside a vessel, andthat it is more important inside. Noti
e that this rough assumption shouldbe further investigated. We then de�ne a set of s
aled and rotated models asde�ned in (III.2.3).Then, we denote by F the following quantity :
∀ω = (x, r, θ) ∈ Ω, F (ω)

def.
= NCCΛ(r,θ)(Mr,θ(·), T̄ (x+ ·, θ))A potential is thus de�ned over the 4D domain as

∀ω ∈ Ω, ρ(ω)
def.
= max(1− F (ω), ǫ). (III.3.3)Vessels as then extra
ted as shortest paths for this potential, as explained inIII.2.5.Figure 3.29 shows some results of vessels extra
ted by this method, super-imposed on the �rst image of the sequen
e. Note how the smoothness inorientation imposed by our method allows the extra
tion of the vessel, evenwhen 
rossings are 
luttering the image. Also, in the left image, the segmen-ted vessels has a very bad 
ontrast with respe
t to the ba
kground, but isstill segmented, whi
h shows the interest of using a �ow based segmentationfor this modality.III.3.4 ResultsIII.3.4.1 Frame registrations : rigid vs. non-rigidFigure 3.30 
ompares the performan
e of our SIFT-based registration methodwith a 
lassi
al rigid registration algorithm. Noti
e our method 
orre
tlyregisters the borders of the vessels.
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Fig. 3.29 � Automati
ally extra
ted vessels. Initial and �nal points areshown with squares. Noti
e that only �ow information (vs anatomi
 infor-mation) was used to perform these segmentations.III.3.4.2 Average �ow in the vas
ulatureFigure 3.31 shows RBCs' speeds in three automati
ally segmented vessels.RBCs were found to 
ross any given se
tion of the vessel one-by-one. Also,linear RBC density along the vessels'axis was found to be essentially equalfor all three vessels (D1 ∼ D2 ∼ D3 ∼ 6.7 ± 1.18 mm−1). The RBC 
urrent
onservation equation V1D1 + V2D2 + V3D3 = 0 is therefore satis�ed withinthe variability of the data (where Vi are the RBCs' speeds in the vessels, and
Di the density of RBCs).III.3.4.3 Variations of the �ow in timeEstimation of velo
ity 
hanges of the RBCs �ow inside the vessels is mu
hsensible to the a

ura
y of frame registration and vessel extra
tion. We per-formed su
h estimations on a trial of our monkey experiment presenting ahigh level of vibrations. Figure 3.32 shows that in the rigid registration 
ase,the data remains too mu
h polluted by signals originating from outside thevessel and no �ow estimation is possible ; whereas the SIFT registration al-lows to deal with these vibrations most of the time (ex
ept when they arefaster than frame a
quisition rate, resulting in blurred raw images).
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Fig. 3.30 � Top : ratio between frame 0 and frame 300 of a representativesequen
e, on an area of interest. From left to right : raw (no registration),rigid registration, SIFT-based registration (
lipping range - i.e. gray-levelintensity s
ale - is the same for the 3 images), SIFT-based registration witha 
lipping range ten times smaller. Bottom : || ||2 
omparison of ea
h frame inthe whole sequen
e to frame 0 (for the area of interest). Raw, rigid registrationand SIFT-based registration are respe
tively represented in green, blue andred. Left : whole sequen
e. Right : zoom on frames 250 to 350
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Fig. 3.31 � RBCs' speeds in three automati
ally segmented vesselsIII.3.5 Con
lusion and Dis
ussionUsing the non-rigid image registration des
ribed here, we were able to a
hievefar better spatial mat
hing between the vas
ulature in di�erent frames. As aresult, the blood �ow signal 
ould be re
overed in vessels that did not yieldany signal upon rigid registration. The obtained RBC �ow 
ould also bevalidated for 
onservation in vas
ular bran
hing points, the total number ofRBCs �owing in and out being found to mat
h. The des
ribed data pro
essingwill hopefully allow in
reasing the a

ura
y and the sensitivity of opti
alimaging-based blood �ow measurements, in parti
ular with respe
t to reliablymapping over large vas
ular networks the small a
tivity dependent blood�ow 
hanges eli
ited by neuronal a
tivation. However, in view of the greatdi�
ulty of 
orti
al imaging a
quisition, we had only one sequen
e at ourdisposal in order to assess the quality of our methods. Validation on otherdata set should thus be needed.
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A B C

D

F

E

Fig. 3.32 � Comparison of the estimations of RBCs velo
ity 
hanges after ri-gid vs non-rigid sequen
e registration. (F) Vessel 
onsidered, extra
ted using�ow-based segmentation. (A,B) Spa
e-time data extra
ted along this vesselafter rigid and non-rigid registrations respe
tively. (C,D) Corresponding es-timates of RBCs velo
ity, using the tensor stru
ture information : only in thenon-rigid 
ase it is possible to estimate the velo
ity and then dete
t heart-pulsation 
hanges. (E) Estimation in the non-rigid 
ase, when averaging thestru
ture tensor over the whole se
tion of the vessel : only little informationis added 
ompared to using only the middle line of the vessel (D)
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tion 145III.4 Appli
ation to Network of Curves Extra
-tionIII.4.1 Introdu
tionIn se
tion III.2, we presented a framework for the extra
tion of vessels orroads between two user-de�ned points. It is however interesting for manymedi
al appli
ations to automati
ally extra
t full networks of vessels. In thisse
tion, we propose an extension of this work to extra
t full networks ofvessels.The proposed algorithm 
onsists in an iterative growing of the network. Atea
h step of the algorithm, a set of key points and jun
tion points is added toseed new geodesi
 bran
hes that are 
onne
ted to the 
urrent network. Thelength τ of these bran
hes is �xed and de�nes the granularity of the network.Noti
e that [15℄ re
ently proposed a similar growing-of-minimal-paths fra-mework, but it is spe
ialized in the segmentation of 
losed 
urves in 2D andmeshing of surfa
es in 3D.III.4.2 Extension DomainGiven a network A = A(i) obtained after i steps of the algorithm, the growingpro
ess 
omputes an extended network A(i+1) by adding new geodesi
s thathave an Eu
lidean length τ > 0. This ensures that the bran
hes ofA(i+1) haveequal length so that its distribution is uniform, avoiding 
lusters of geodesi

urves.As in se
tion A.2.1, the Eu
lidean geodesi
 distan
e UEu
A (ω0) from ω0 to Ais the Eu
lidean length of the geodesi
 γ∗ = γ(A, ω0) joining ω0 to A
UEu
A (ω0) =

∫ 1

0

‖(γ∗)′(t)‖dt.The extension domain is de�ned as
E(A, τ) = ∂BEu
(A, τ) ∩ B(A, τσ) (III.4.1)with notations :
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BEu
(A, r) =

{
ω ∈ Ω \ UEu
A (ω) ≤ r

}

∂BEu
(A, r) =
{
ω ∈ Ω \ UEu
A (ω) = r

}

B(A, r) = {ω ∈ Ω \ UA(ω) ≤ r}
∂B(A, r) = {ω ∈ Ω \ UA(ω) = r}

(III.4.2)It is 
omposed of points ω ∈ Ω that 
an be rea
hed from A by geodesi
s ofEu
lidean length τ . We also want these points to be meaningful a

ording totheir geodesi
 distan
e to A, whi
h requires that UA(ω) ≤ τσ. This imposesthat for any point on E(A, τ), UA(ω)/UEu
A (ω) ≤ σ, e.g. the average value of
ρ along the geodesi
 
urve joining ω to A is better than σ. The threshold σthus guarantees that the extension domain does not extend in areas whereno vessel is present. σ must be sele
ted a

ording to the average response ρof the vessel dete
tor for the targeted appli
ation.Figure 3.33 shows a typi
al extension domain around a single vessel.Numeri
al 
omputation. The 
omputation of UEu
A is des
ribed in ap-pendix A.In order to save time, the propagation for the 
omputation of both UEu
A and
UA is performed only on the grid points ω that satisfy UA(ω) ≤ τσ.Figure 3.33 shows the level sets of the geodesi
 distan
e, 
omputed inside theregion where UA(ω) ≤ τσ. E(A, τ) is the interse
tion of the Eu
lidean ballborder (light) and the geodesi
 ball (gray).III.4.3 Network ExtensionA set K(A) of lo
ally optimal key points are seeded on the extension domain
E(A, τ). Theses points are the extremities of the new geodesi
 bran
hes addedto the 
urrent network A.Key points sele
tion. A key point ω ∈ K(A) is a lo
al minimum of thegeodesi
 distan
e, as measured using a neighborhood of size δ in the spatialdomain. A point ω = (x, r, θ) ∈ E(A, τ) is a lo
al minimum of the geodesi
distan
e if

∀ω̃ = (x̃, r̃, θ̃) ∈ E , |x− x̃| ≤ δ =⇒ UA(x) ≤ UA(x̃). (III.4.3)
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Fig. 3.33 � left : retinal image. Proje
tion of the starting set A is indi
atedby a white square. middle : 2D s
hemati
 representation of the distan
efrom A, restri
ted to B(A, τσ) (for ea
h 2D point x, minr,θUA(x, r, θ) isrepresented). Corresponding level-sets are shown. A 2D representation of
∂BEu
(A, τ) is superimposed, and key points are indi
ated by white squares.right : key points 
onnexions to A.The set of key points is

K(A) = lo
.argmin
ω∈E(A,τ)

UA(ω), (III.4.4)Extra
tion of lo
al minimum of geodesi
 salien
y is sensitive to noisy datasets, in parti
ular in �at areas where no vessel is present. The size δ of thespatial neighborhood should be adapted to the noise level of the image. δ isset to 4 pixels in the numeri
al experiments.Figure 3.34 shows a key point dete
ted on the boundary of the extensiondomain in a syntheti
 example. Figure 3.33 shows that several key points aredete
ted on a medi
al image near a bran
hing of vessels.Key points 
onnexion. An augmented network is obtained by linkingea
h ω ∈ K(A) to the 
urrent network A. The geodesi
 γ∗(ω,A) linking ωto A is 
omputed and is added to the existing network. These paths arelikely to be vessels segments starting from the initial set A. This requires noadditional 
omputation sin
e UA(ω) is readily available inside B(A, τσ), and
γ∗(ω,A) ⊂ B(A, τσ).We denote the union of these paths by :
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A

E(A, τ)

ω ∈ K(A)

Fig. 3.34 � S
hemati
 display of the extension domain extension domain
E(A, τ) where a single key point ω ∈ K(A) is dete
ted.

K(A) =
⋃

ω∈K(A)

γ∗(ω,A) (III.4.5)III.4.4 Network Jun
tionsIn the 
ase whenA 
onsists of several starting points, the pro
edure des
ribedin the previous se
tion may not be su�
ient to extra
t a 
omplex network.Linking di�erent part of the network is required in some 
ases (�gure 3.35).Also, noisy images generate a network whose topology might progressivelydiverge from the true network, and 
orre
ting this requires to join severalparts of it. This is a
hieved by 
omputing a set of jun
tion points J (A) ⊂
B(A, τσ)∩BEu
(A, τ) and linking these points to the network with geodesi
s.Jun
tion points sele
tion. The geodesi
 distan
e UA is singular at apoints ω that are 
onne
ted by two geodesi
s to two di�erent networks points
ω1, ω2 ∈ A. These two points are ne
essarily at equal geodesi
 distan
es
dF (ω, ω1) = dF (ω, ω2) = UA(ω). To ensure that these two points belong todi�erent parts of the network that should be joined, we impose that theyare far away a

ording to the topology of A, as measured by their distan
e
DA(ω1, ω2) de�ned as the Eu
lidean length of the shortest path from ω1 to
ω2 in A. Also, like in the 
ase of extension domain, we require that thepoints are meaningful from the point of view of underlying vessels, e.g. that
UA(ω1)/UEu
A (ω1) and UA(ω2)/UEu
A (ω2) are less than σ.
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tion 149We denote as ω ∈ J0(A) the set of singular points whose 
losest networkpoints (ω1, ω2) satisfyDA(ω1, ω2) > η, UA(ω1)/UEu
A (ω1) ≤ σ and UA(ω2)/UEu
A (ω2) ≤
σ. η is set to 10 pixels in the numeri
al experiments.Similarly to key points (III.4.4), jun
tions points are lo
al minimum of thegeodesi
 distan
e, but are restri
ted to be singular points

J (A) = lo
.argmin
ω∈J0(A)

SA(ω) (III.4.6)where (III.4.3) de�nes a lo
al minimum. Figure 3.35 shows an example ofjun
tion points where two parts of A are aligned along the same vessel.
A

ω ∈ J (A)

A J0(A)

Fig. 3.35 � Jun
tion point ω ∈ J (A).
Jun
tion 
onnexion. Ea
h jun
tion point ω ∈ J (A) is linked to the net-work A by extra
ting the two geodesi
s γ∗1 and γ∗2 linking ω to its two 
losestpoints ω1, ω2 ∈ A. Numeri
ally, the set J0 is determined during the FastMar
hing propagation as points where the fronts emanating from di�erentbase points inA are 
ollapsing. A 
areful initialization of the gradient des
entaround the point ω is needed be
ause the distan
e fun
tion UA is singularat this lo
ation. In order to 
ompute the geodesi
 to ω1, we perform a gra-dient des
ent by using a numeri
al approximation of the gradient that onlydepends on values at points belonging to the front emanating from ω1. Thesame holds for ω2 .Two proper gradients are therefore 
omputed that de�nethe two des
ent dire
tions for γ∗1 and γ∗2 .We denote the union of these paths by :
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J(A) =

⋃

ω∈J (A)

γ∗1(ω,A) ∪ γ∗2(ω,A) (III.4.7)III.4.5 Vessels CroppingUsing geodesi
s that emanate from both key points and jun
tions points, are�ned network Ā(i+1) is obtained that extend the initial network A = A(i)

Ā(i+1) = A(i) ∪K(A(i)) ∪ J(A(i)) (III.4.8)Sin
e the extremities of this re�ned network lie at a �xed distan
e τ from A,the network might extend slightly beyond the boundaries of vessels. The �nalextended network A(i+1) is obtained from Ā(i+1) using a 
ropping pro
ess thatremove part of the network that are unlikely to belong to vessels.For ea
h 
urve {γ∗(t)}1t=0 emanating from a key point in the re�ned network
Ā(i+1), a 
ropped 
urve is 
omputed as {γ∗(t)}tct=0, where tc is the minimum
t satisfying F (γ∗(t)) ≤ σ. The �nal network A(i+1) is obtained from Ā(i+1)by 
ropping all the geodesi
 
urves.III.4.6 Overview of the AlgorithmStarting from an initial set A(0) of (either isolated or not) seed points, thenetwork is progressively grown by inserting new key points and jun
tionpoints. In pra
ti
e, a set {x1, . . . , xK} of spatial lo
ations are provided eitherby the user or in an automati
 way depending on the modality, and A(0) =

{A(xk)}Kk=1. This leads to the following steps :1. Initialization : the initial points are A(0), set i← 0.2. Computing the extension domain : 
ompute E(A(i), τ) as explained inSe
tion III.4.2.3. Seeding key points : 
ompute the set of key points K(A(i)) as explainedin Se
tion III.4.3.4. Seeding jun
tion points : 
ompute the set of key points J (A(i)) asexplained in Se
tion III.4.4.5. Network extension : 
ompute the extended network Ā(i+1) de�ned in(III.4.8) by 
onne
ting seeded point.
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tion 1516. Network pruning : 
ompute A(i+1) from Ā(i+1) as explained in Se
tionIII.4.5.7. Stop : if A(i+1) 6= A(i), set i← i+ 1 and go ba
k to 2.Multi-pass re�nement. The algorithm presented in the previous se
tionuses a �xed τ , and might thus fail to dete
t vessel extremities. Indeed, if thevessel extremity is lo
ated far from E(A(i), τ), it might not be part of a geo-desi
 starting from the key points K(A(i)). To address this issue, a re�nementpass is added if A(i+1) = A(i), whi
h lower the value of τ . In the numeri
al ex-periments, we have used a set of values τ = {τmax, τmax/2, τmax/4}. Redu
ingthe value of τ does not require to re-
ompute UA and UEu
A .III.4.7 Numeri
al ExperimentsExperiments were 
arried out on both syntheti
 and medi
al images. Forall the presented results, we used dis
retization nr = 12 and nθ = 12 forradius and orientation dimensions. The speed on the orientation dimensionwhat set to µ = 0.1 π
nθ
, and the speed on the radius dimension what set to

λ = 0.5 rmax−rmin

nr
. Otherwise indi
ated, the values σ = 0.25 and τmax = 48where used for syntheti
 examples, and σ = 0.33 and τmax = 36 for medi
alexamples where the quality of vessel is less good on average.Phantom experiment of �gure 3.36 (top) shows the behavior of our methodin 
ase of jun
tions. All the jun
tions are handled 
orre
tly by the algorithm.Phantom experiment of �gure 3.36 (bottom) shows the behavior of our me-thod in 
ase of a (self-)
rossing. The 
orre
t segmentation of the vessel isretrieved by the algorithm. All the examples where 
omputed from a singleuser-provided seed point.Figures 3.37, 3.38 and 3.39 show results on medi
al images. For �gures 3.37,3.38, the only required human-intera
tion is to set the initial points, e.g. topoint out the relevant stru
ture to segment in the image. For �gure 3.38,initial points were 
omputed automati
ally as lo
al minima of ρ. Noti
e thatdepending on the image modality, the initial point 
ould be 
omputed auto-mati
ally (e.g. dete
tion of opti
al papilla on retinal images).
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Fig. 3.36 � top : Multiple jun
tions example on syntheti
 data, after fullrunning of the proposed method (τmax = 96) White square : user providedinitial seed. Bla
k squares : key points. Bla
k 
ir
les : jun
tion points. bot-tom : Crossing examples on syntheti
 data, after full running of the proposedmethod. White square : user provided initial seed.III.4.8 Con
lusion and dis
ussionThe networks of 
urves extra
tion algorithm proposes a framework whi
h na-turally extend the geodesi
 method by de�ning the network extension notion.This method was tested on several syntheti
 and medi
al examples, and for
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Fig. 3.37 � Experiments of the network extra
tion algorithm on 
orti
alimages. White square : user-de�ned initial seed. Noti
e the 
orre
t handlingof interse
tions and forks.

Fig. 3.38 � Experiments of the network extra
tion algorithm on retinalimages. Two initial points were provided (white squares). Interse
tions andforks are 
orre
tly handled.di�erent kinds of initial 
onditions.Some problems remain, and their pre
ise analysis 
ould lead to improvmentsin our algorithm.
• The overall speed of the algorithm 
ould be improved. One 
ould 
onsiderimplementing speed-up versions of Fast-Mar
hing. Furthermore, as Fast-
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Fig. 3.39 � Experiments of the network extra
tion algorithm on retinalimages. Initial seeds (white squares) were 
omputed automati
ally as lo
alminima of ρ over an extended 15 pixels neighborhood. Jun
tion betweendi�erent parts of the network are 
orre
tly handled. Noti
e that an in
orre
tseed (bottom), did not give birth to any lo
al network.Mar
hing starts from the full 
urrent network at ea
h step, many 
ompu-tations are performed several times � one 
ould thus 
onsider freezing likestrategies, or partially reuse already 
omputed distan
es map in some way.
• The algorithm does not make an a
tual di�eren
e between 
rossings andjun
tions � whi
h are just disriminated by the angle of in
iden
e of thevessel(s). The speed parameter on angular dire
tion a
ts as a sele
tionparameter for an admissible jun
tion angle. Two vessels 
rossing with asmall angle will lead to a false segmentation. It seems di�
ult to over
omethis limitation without the help of a post-pro
essing step.
• In our implementation, the parameters τ and σ were set globally by hand,and will de
ide wether or not an interse
tion is 
rossed or not. It wouldbe interesting to be able to learn those parameters, or to make them be(lo
ally) adaptable to 
hara
teristi
s of the image.
• Extremities of vessels are sometimes miss-handled (
f �gure 3.39). This isdue to the fa
t that parameter τ 
annot be de
reased too mu
h withouthaving in
ertainty in the speed along the shortest path. Again, a post-pro
essing 
ould handle this 
ase.



Chapitre IVHARDI-tra
king using shortestpaths
Introdu
tionIn this 
hapter, we propose an appli
ation of shortest paths formalism to theproblem of �ber tra
king in High Angular Resolution Di�usion Imaging.Di�usion Magneti
 Resonnan
e Imaging (DMRI) [11℄ is derived from MRI(
f. se
tion III.3.1), but allows to evaluate the probability distribution ofwater mole
ules in any dire
tion at any point of a tissue. Its main appli
ationis to produ
e an image of white water �ber bundles in the human brain : dueto organization and physi
o-
himi
al properties of the neurons axones, watermole
ules tend to di�use faster along su
h bundles. Using DMRI imaging,one 
an then assess the presen
e of a white matter �ber at a given point ofthe brain, in a given dire
tion. White matter �bers bundles are known to
onvey neural information between di�erent part of the brain, and studyingtheir anatomy helps to improve the knowledge of neuros
ientists with respe
tto the 
onnexion of di�erent parts of the brain, and to its way of operating.Many new di�usion models and �ber tra
king algorithms have re
ently ap-peared in the literature always seeking better brain 
onne
tivity assessment,in parti
ular regarding 
omplex �ber 
on�guration su
h as 
rossing, bran-
hing or kissing �bers. Clini
al appli
ations are also asking for robust tra
-tography methods, as they are the unique in vivo tool to study the integrity155
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king using shortest pathsof brain 
onne
tivity.The most 
ommonly used model is the di�usion tensor (DTI) [12℄, in whi
hdi�usion is measured in the three prin
ipal dire
tions (�gure 4.1, left). Thismodality is only able to 
hara
terize one �ber 
ompartment per voxel, andis not adapted to areas of �bers 
rossings.Several alternatives have been proposed to over
ome this limitation of DTI,mainly using high angular resolution di�usion imaging (HARDI) [210℄. Seve-ral 
ompeting HARDI re
onstru
tion te
hnique exist in the literature, whi
hall have their advantages and disadvantages. Nonetheless, the 
ommunityseems to now agree that a sharp orientation distribution fun
tion (ODF),often 
alled �ber ODF or �ber orientation density fun
tion (fODF) [86, 207,90, 51℄, able to dis
riminate low angle 
rossing �bers needs to be used for�ber tra
tography (�gure 4.1, right).

Fig. 4.1 � DTI of a human brain (left) and fODF (right) on the same 
oronalsli
e. Fibers of the Corpus Callosum (CC) and of the Corti
ospinal Tra
t 
anbe seen in the plane of the image, as well as a se
tion of Cingulum (Cing).Three 
lasses of algorithms exist to 
ompute �bers or evaluate 
onne
tivitiesbetween di�erent part of the brain from the volumi
 data : deterministi
,probabilisti
 and geodesi
. A large number of tra
tography algorithms havebeen developed for DTI, whi
h are limited in regions of �ber 
rossings. WhileHARDI-based extensions of streamline deterministi
 [210, 107, 20, 215, 51℄and probabilisti
 [147, 154, 191, 14, 178, 221, 51℄ tra
king algorithms have



IV.1 Method 157�ourished in the last few years, there has not been, to our knowledge, anyproposition to generalize DTI geodesi
 tra
king [163, 88℄ for HARDI measu-rements.In this 
hapter, we develop an algorithm for brain 
onne
tivity assessmentusing geodesi
s in HARDI. We propose to re
ast the problem of �nding
onne
tivity maps in the white matter to the 
al
ulation of shortest pathson a Riemannian manifold. This Riemannian manifold is a 
ross-produ
tbetween white matter volume and a unit sphere representing the possibledire
tion of �bers. The potential will be de�ned from �ber ODFs 
omputedfrom HARDI measurements.Anisotropy will be used in order to 
onstraint the paths to follow a dire
tionin the white matter whi
h is 
oherent with the position on path on the unitsphere. Noti
e that in 
hapter III, this was unne
essary, due to the stru
tureof the vessels : with our model, it is very unlikely for example to �nd shortestpaths perpendi
ular to vessels.ContentsIV.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . 157IV.1.1 HARDI Riemannian manifold . . . . . . . . . . . . 159IV.2 Implementation . . . . . . . . . . . . . . . . . . . . . 162IV.3 Experimental results . . . . . . . . . . . . . . . . . 164IV.3.1 Real HARDI data . . . . . . . . . . . . . . . . . . 164IV.3.2 Geodesi
 
onne
tivity results . . . . . . . . . . . . 164IV.3.3 Comparison with existing methods . . . . . . . . . 168IV.3.4 Approximation quality . . . . . . . . . . . . . . . . 169IV.4 Con
lusion and Dis
ussion . . . . . . . . . . . . . . 169Publi
ation related to this workThis 
hapter is based on the work published in [165℄.IV.1 MethodFirstly, let us re
all some basi
s de�nitions about Riemannian manifolds �these de�nitions were already introdu
ed in se
tion I.3.
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king using shortest pathsLet (V, g) be a Riemannian manifold i.e.
• V is a k-dimensional manifold
• for all x ∈ V , g(x) is a bilinear symmetri
 positive de�nite appli
ation on
TxV , indu
ing a metri
 ||y||x def.

=
√

g(x)(y, y) over that manifold.The length of a smooth 
urve γ : [0, 1]→ V is then de�ned as
L(γ)

def.
=

∫ 1

0

‖γ′(t)‖γ(t)dt
def.
=

∫ 1

0

√

γ′(t)Tg(γ(t))γ′(t)dt. (IV.1.1)Given a set A ⊂ V of seeds points and a set B ⊂ V of ending points, ageodesi
 γ∗(t) ⊂ V joining A to B is de�ned as a 
urve with minimal lengthbetween A and B :
γ∗(A,B)

def.
= argmin

γ∈C(A,B)

L(γ), (IV.1.2)where C(A,B) is the set of 
urves γ su
h that γ(0) ∈ A and γ(1) ∈ B. The
orresponding geodesi
 distan
e is d(A,B)
def.
= L(γ∗(A,B)).Following A, let us also de�ne the Eu
lidean length of the 
urve γ

Leuc(γ)
def.
=

∫ 1

0

‖γ′(t)‖dt. (IV.1.3)and
Lsq(γ)

def.
=

∫ 1

0

‖γ′(t)‖2γ(t)dt. (IV.1.4)If we interpret the metri
 indu
ed by g as as the inverse of a �speed� tensorover V , for any smooth 
urve γ, L(γ)/Leuc(γ) 
an be thought of as theaverage of inverse speed along the 
urve, while
√

Lsq(γ)/Leuc(γ)− (L(γ)/Leuc(γ))2 represents the standard deviation of thisquantity.Conne
tivity measures. Considering A and B two subset of V we thende�ne
C(A,B)

def.
=
L(γ∗(A,B))

Leuc(γ∗(A,B))
, Cmax(A,B)

def.
= max

t∈[0..1]
‖(γ∗(A,B))′(t)‖γ(t)

Cσ(A,B)
def.
=

√

Lsq(γ∗(A,B))

Leuc(γ∗(A,B))
−
( L(γ∗(A,B))

Leuc(γ∗(A,B))

)2 (IV.1.5)
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γ∗(A,B) being a geodesi
 betweenA and B, C(A,B), Cσ(A,B) and Cmax(A,B)are respe
tively measures of average inverse speed, inverse speed standard de-viation, and worst inverse speed to rea
h B from A. They 
an therefore beinterpreted as three di�erent 
onne
tivity measures between A and B (seeA).IV.1.1 HARDI Riemannian manifoldWe now explain how we re
ast the �bers bundles tra
king problem fromHARDI data to the 
al
ulation of 
onne
tivity maps on a Riemannian ma-nifold.let us denote by E ⊂ R

3 the white matter volume, S the unit sphere and
V

def.
= E × S. Using su
h a 5-dimensional spa
e 
an disambiguate 
rossing
on�gurations sin
e in su
h a spa
e (x, y, z, eθ,ϕ) and (x, y, z, eθ′,ϕ′) are 
om-pletely di�erent points. The idea was introdu
ed [91℄, but the authors pro-posed to segment rather than tra
k bundles using level-sets.At every point (x, y, z) ∈ E, we 
an 
ompute the fODF fxyz : eθ,ϕ ∈ S →

fxyz(eθ,ϕ) ∈ R
+.The full data 
an thus be naturally modelled as a mapping

f from V to R
+ : f : (x, y, z, eθ,ϕ) ∈ V 7→ fxyzθϕ

def.
= fxyz(eθ,ϕ) ∈ R

+.Let us de�ne the metri
 g at any point (x, y, z, eθ,ϕ) of V as
g−1

xyzθϕ

def.
=














E
︷ ︸︸ ︷

S
︷ ︸︸ ︷

ρ(fxyzθϕ) 0 0 0 0

0 ρ(fxyzθϕ) 0 0 0

0 0 ρ(fxyzθϕ) 0 0

0 0 0 α 0

0 0 0 0 α














=

(

ρ(fxyzθϕ)I3 0

0 αI2

)

where ρ is an in
reasing fun
tion from R
+ to R

+∗ and α is a parameter
ontrolling the speed on the angular spa
e S with respe
t to the speed onthe E volume. Su
h a metri
 �favors� paths going through areas of highdi�usion (�gure 4.2).Re
asting the problem in the white matter volume, let us 
onsider twopoints (x1, y1, z1) and (x2, y2, z2) ∈ E between whi
h we wish to estimatethe 
onne
tivity. Let us denote A = {x1, y1, z1, eθ,ϕ | eθ,ϕ ∈ S} and B =

{x2, y2, z2, eθ,ϕ | eθ,ϕ ∈ S} ⊂ E × S.
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θ = π/2θ = 0

Fig. 4.2 � Illustration of the proposed potential in 2D. Starting from a 2D →
(θ → R

+) dataset (top), we interpret it as a (2D× θ)→ R
+ mapping. Sli
esfor θ = 0 (bottom left) and θ = π/2 (bottom right) are represented. Potentialis lower on the θ = 0 sli
e. Paths (in blue and red) are 
omputed on this

(2D × θ) spa
e, and then reproje
ted in 2D. Noti
e however that the bluepath is not 
onsistant as it was 
omputed in the θ = 0 sli
e while having a
θ = π/2 dire
tion.
C(A,B), Cσ(A,B) and Cmax(A,B) are then natural measures of 
onne
tivitybetween (x1, y1, z1) and (x2, y2, z2). Furthermore, let us denote by π : E×S →
E the proje
tion su
h that π(x, y, z, eθ,ϕ) = (x, y, z). To the geodesi
 γ∗(A,B)in E × S then 
orresponds a proje
ted path π(γ∗(A,B)) in E ⊂ R

3. Sin
e
γ∗(A,B) follows a high di�usion traje
tory, π(γ∗(A,B)) is likely to follow ana
tual �ber bundle in the volume. With this point of view, α 
an be seen asa smoothing parameter of the angular variations of the �bers.However, among the paths γ : [0, 1] → V , we would like to favor the onessu
h that at every point π(γ) follows the 
orresponding eθ,ϕ dire
tion : if
γ(t0) = (x0, y0, z0, eθ0,ϕ0), we would like to have

(π(γ)x(t0), π(γ)y(t0), π(γ)z(t0)) ≈
±eθ0,ϕ0 ||(π(γ)x(t0), π(γ)y(t0), π(γ)z(t0))||

(IV.1.6)
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urve in �gure 4.2 shows a path whi
h is not satisfying this 
onstraint,but as the same length as the red path.In order to en
ourage these paths and thus to penalize paths whi
h are trans-versal to �bers, we propose the following approa
h : let us 
onsider a point
(x, y, z, eθ,ϕ). Instead of using an isotropi
 metri
 ρ(fxyzθϕ)I3 in the �rst threedire
tions, one would like to favor propagation along the eθ,ϕ dire
tion. Inorder to do so, ρ(fxyzθϕ)I3 is repla
ed by the following matrix :

(Rθ,ϕ)T






ρ(fxyzθϕ) 0 0

0 min(ǫ, ρ(fxyzθϕ)) 0

0 0 min(ǫ, ρ(fxyzθϕ))




Rθ,ϕwhere Rθ,ϕ is a rotation whi
h maps the �rst axis to the eθ,ϕ dire
tion, and

ǫ is some 
onstant. As long as ρ(fxyzθϕ) > ǫ, this tensor favors propagationin the eθ,ϕ dire
tion. However if ρ(fxyzθϕ) ≤ ǫ (i.e. if the di�usion is smallat this point), this does not make sense, and we keep the isotropi
 tensorde�ned by ρ(fxyzθϕ)I3. Figure 4.3 illustrate this : in the θ = 0 sli
e, wherepotential is low, we en
ourage propagation in the θ = 0 dire
tion. The red
urve will then be shorter than the blue one.
θ = π/2θ = 0

Fig. 4.3 � Illustration of the proposed 
orre
ted potential in 2D.The 
hoi
e of this metri
 is a natural way of handling the 5-dimensional
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king using shortest pathsHARDI data and to obtain 
onne
tivity maps and �bers. It ensures that (i)the full HARDI angular information is used, (ii) geodesi
s go through areasof high di�usion, (iii) geodesi
s travel in those areas in the 
orre
t dire
tionsand (iv) 
rossing 
on�gurations are disambiguated.Noti
e also that the analysis 
ondu
ted in III.2.7 apply to this framework :the 
hoi
e of the metri
 des
ribed above favors 
urves with low 
urvature.IV.2 ImplementationFor our problem, E was dis
retized as a subset of a 3-dimensional grid, atthe HARDI measurement spatial de�nition � noti
e that due to the non-re
tangular shape of E, we use the method desribed in appendix A.1 toprevent the front to be 
omputed outside E, e.g. to propagate outside thewhite matter volume. S was meshed in su
h a way that every vertex of themesh 
orresponds to a dire
tion of HARDI measurements � leading to a 6neighbors system. Furthermore, in order to a
hieve good pre
ision, we 
hoseto use a 26-neighborhood in the dis
retization of E.However, 
omputing distan
e map using Fast-Mar
hing algorithm is this fra-mework is unreallisti
. Re
all that the update state is of exponential 
om-plexity in the dimension of the spa
e. In the proposed framework, every pointof the dis
retization has 156 neighbors, and is surrounded by thousands ofsimpli
es.Sin
e we are mainly interested in pre
ision in the high di�usion dire
tions, wepropose to 
ompute d(A, {x}) at ea
h point by using Dijkstra lo
al updatestep for the 156 neighbors. The Fast-Mar
hing lo
al update step is then onlyapplied for the simpli
es Sd of S48a (see se
tion II.5.2) in the 3 �rst dimensionswhi
h 
ontain ±eθ,ϕ dire
tion, and their sub-simpli
es (see �gure 4.4, se
onds
heme). Furthermore, we perform this 
omputation only if the di�usion isimportant enough (i.e. ρ(fxyzθϕ) > ǫ) at 
urrent point. We also 
hose toupdate from a simpli
e only if the 
omputed values satis�es monoti
ity andupwinding 
onditions des
ribed in II.4. The update step is thus the following.
U(x)← min{min

S
(1)
j

{s(1)
j }, sd} (IV.2.1)
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eθ,ϕ

Fig. 4.4 � Illustration of the simpli
es used in the update step, in 2D, witha 8-neighbors system. All the 1-dimensional simpli
es are used, while forsimpli
es of bigger dimension, only the ones 
ontaining ±eθ,ϕ dire
tion areused.Figure 4.5 shows an appli
ation of this strategy to a uniform anisotropi
potential in dimension 2.

Fig. 4.5 � Results of the mixed Dijkstra-FastMar
hing algorithm for a uni-form anisotropi
 potential in dimension 2, using the neighborhood systemdes
ribed in 2.9.
This leads to tra
ktable 
omputations, while the pre
ision in the �bers dire
-tion is preserved. This 
hoi
e will be further dis
ussed in the experimentalresults se
tion.
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king using shortest pathsIV.3 Experimental resultsIV.3.1 Real HARDI dataThe HARDI dataset was a
quired on a whole-body 3 Tesla Magnetom Trios
anner (Siemens, Erlangen) equipped with an 8-
hannel head array 
oil [4℄.The spin-e
ho EPI sequen
e, TE = 100 ms, TR = 12 s, 128 x 128 imagematrix, FOV = 220 x 220 mm2, 
onsists of 60 evenly distributed di�usionen
oding gradients with a b-value of 1000 s/mm2 and 7 images without anydi�usion weightings. The measurement of 72 sli
es with 1.7mm thi
kness (nogap), whi
h 
overed the whole brain, was repeated three times, resulting inan a
quisition time of about 45 minutes. The SNR in the white matter of this
S0 image was estimated to be approximately 37. Additionally, fat saturationwas employed, 6/8 partial Fourier imaging, Hanning window �ltering andparallel GRAPPA imaging with a redu
tion fa
tor of 2.From these HARDI measurements, the �ber ODF was re
onstru
ted. Asmentioned in the introdu
tion, several �ber ODF re
onstru
tion algorithmexist [86, 207, 90, 51℄. Here, we used the analyti
al spheri
al de
onvolutiontransform of the q-ball ODF using spheri
al harmoni
s [51℄. We used anorder 4 estimation with symmetri
 de
onvolution �ber kernel estimated fromthe real data, resulting in a pro�le with FA = 0.7 and [355, 355, 1390] ×
10−6mm2/s.The geodesi
 tra
king is performed within a white matter mask was obtainedfrom a minimum fra
tional anisotropy (FA) value of 0.1 and a maximumADCvalue of 0.0015. These values were optimized to produ
e agreement with thewhite matter mask from the T1 anatomy. The mask was morphologi
ally
he
ked for holes in regions of low anisotropy due to 
rossing �bers.IV.3.2 Geodesi
 
onne
tivity resultsFor ea
h bundle ex
ept the Superior Longitudinal Fas
i
ulus (SLF), expe-riments were 
arried out with ρ(f) = ln(f)/ln(2), ǫ = 1 and α = 2 afterthresholding values of the fODF under 1 to avoid negative values � the 
hoi
eof a logarithmi
 fun
tion for ρ was driven by both the need to 
ompa
t thehighly variable values of the fODF (many other methods perform a linear



IV.3 Experimental results 165voxelwise res
ale � whi
h is not suitable for our purpose), and the need toavoid strong anisotropy that will lead to violations of the upwinding 
ondi-tions (II.4.17). Our method however demonstrates robustness with respe
tto the exa
t 
hoi
e of these parameters.Sin
e SLF has high 
urvature, we set angular speed α = 8 in order to fa-vor tra
king of a
tual SLF rather than proje
tions on the o

ipital 
ortex.Runtime was about 75min for ea
h bundle. It 
an be further redu
ed by 
om-puting only some of the 
onne
tivity maps, or by 
omputing them only ona subset of white matter. While results presented below show 
onne
tivitymaps on the full maps, experiments show that the bundles 
an be retrie-ved by stopping the algorithm when 20% of the mask has been visited. Theruntime is then redu
ed to about 12min.Figure 4.6 shows 
onne
tivity measures and some geodesi
s obtained fromdi�erent seeds manually pla
ed into major �bers bundles, whi
h agree withour knowledge of the white matter anatomy. Noti
e the 
orre
tness of themaps on Corti
ospinal Tra
t (CST) , whi
h does not spread into the CorpusCallosum (CC). Also, the Cingulum (Cg), whi
h is a thin stru
ture 
loseto CC is 
orre
tly handled by our method. This 
learly shows the advan-tage of using a 5D spa
e : sin
e �bers in Cg and CC are perpendi
ular,these two bundles are very distant in our 5D spa
e, while they are extre-mely 
lose in 3D. Other �bers bundles are also 
orre
tly retrieved, su
h asthe Inferior Fronto-O

ipital Fas
i
ulus (IFO) and the Anterior Thalami
Radiations (ATR). Furthermore, 
oherent results are obtained by the threeproposed 
onne
tivity measures.On �gure 4.7 isosurfa
es of the 
onne
tivity maps are shown for all the pre-vious �bers bundles, and for the 
orresponding �bers in the right hemisphere.Noti
e that the lower part of SLF is missed in the right hemisphere.Figure 4.8 shows some geodesi
s in the left hemisphere.Figure 4.9 shows results on Corpus Callosum (CC). Several experiments wereran from manually provided seeds. Noti
e that CC is not segmented by ourmethod. Rather, �bers � in
lude spenium on the posterior part of CC �are tra
ked from ea
h given seed. Cingulum is also represented. While thisanatomi
al stru
ture is very 
lose to CC in 3D spa
e, it is not in our 5Dsegmentation spa
e, and thus it is 
orre
tly not retrieved by our method.
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CST
Cg
IFO
ATR

SLFFig. 4.6 � Geodesi
 tra
king results on �ve major �bers bundles in lefthemisphere. From left to right, C, Cmax, Csigma and FA.
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Fig. 4.7 � Geodesi
 tra
king results on major �bers bundles � left and righthemispheres. Isosurfa
es of the 
onne
tivity measures are shown. Ea
h bundlein a di�erent 
olor. In yellow, the CST (C) ; in blue, the Cg (C) ; in red, theIFO (Cmax) ; in orange, the SLF (Cmax) ; in green, the ATR (C). Bottom Row :some 
orresponding geodesi
s.

Fig. 4.8 � Geodesi
s 
orresponding to major �bers bundles in left hemisphere.In yellow, the CST ; in blue, the Cg ; in red, the IFO ; in orange, the SLF ; ingreen, the ATR.
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Fig. 4.9 � Geodesi
 tra
king results on Corpus Callosum (CC). Seeds areindi
ated in red. Cingulum in left hemisphere is also represented (Red)IV.3.3 Comparison with existing methodsIn this se
tion, we 
ompare our results with results obtained by other methodson the same data :
• The GCM algorithm of [163, 118℄ (�gures 4.10 and 4.11). Tensors wereevaluated from the raw data using the framework developped in [117℄.Conne
tivity measures 
orresponding to our C and Cσ were 
omputed asindi
ated in [163, 118℄. We furthermore 
omputed the Cmax 
onne
tivitymeasure.
• The deterministi
 HARDI tra
king algorithm des
ribed in [52℄ (�gure4.12).While GCM are faster than our method, the obtained C and Cmax resultsare less fo
ussed on the bundles of �bers, and are subje
t to �leaks� in otherbundles (Cg, SLF, and link to the opposite hemisphere through CC for CST).Moreover, shallow bundles not aligned with the grid seem to be missed bythe method (e.g. Cg, lower part of CST)
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lusion and Dis
ussion 169On all experiments, Csigma is sensitive to the grid orientation, and givesresults of varying quality (�gure 4.10).The deterministi
 tra
king approa
h (�gure 4.12) gives generally satisfyingresults, but is also subjet to leaks (leak in opposite hemisphere for ATR, leakin CC from Cg). Due to its high 
urvature and its ambiguity, SLF is also nottra
ked 
orre
tly.Overall, while these two methods are faster, our method seems to perform ina 
omparable or better way on the sele
ted tra
ks.IV.3.4 Approximation qualityIn this se
tion, we dis
uss the 
hoi
e of (IV.2.1) as an approximation of more
omplete Fast-Mar
hing update steps. We 
omputed 
onne
tivity maps using4 di�erent update s
hemes : (1) pure Dijkstra algorithm, (2) (IV.2.1) s
heme,(3) : (2) + Fast-Mar
hing update state applied to the neighboring simpli
esin the three �rst dire
tions (4) Fast-Mar
hing update state applied to allsimplexes in the three �rst dire
tions. Figure 4.13 synthesizes those s
hemes.Isosurfa
es of 
onne
tivity maps are shown �gure 4.14, for the 4 s
hemes,and the same 
onne
tivity value. While pure Dijkstra algorithm produ
esdi�erent results, the other methods provided qualitatively equivalent results.This plaid for the use of s
heme (2), whi
h is the fastest among those three.IV.4 Con
lusion and Dis
ussionWe presented a geodesi
 based tra
king algorithm on HARDI data. Ourmethod rapidly estimates 
onne
tivity maps inside a white matter mask fromseed points, without the need for an expli
it 
omputation of �bers. All thedire
tions of HARDI measurments are used by our method. Our experimentsplaid for the use of a 5D spa
e and show that our method is able to re
over
omplex �ber bundles, whi
h are often di�
ult to tra
k.However, our experiments are preliminar. A full validation of the methodwould imply a systemati
 study on a inter-subje
t large database, as well asa the study of the dependan
y of the method with respe
t to its parameters,in
luding the 
hoi
e of ρ.
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CST
Cg
IFO
ATR

SLFFig. 4.10 � GCM results on �ve major �bers bundles in left hemisphere.From left to right, C, Cmax, Csigma and FA.
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Fig. 4.11 � GCM results on major �bers bundles in the left hemispheres.Isosurfa
es of the 
onne
tivity measures are shown. Ea
h bundle in a di�erent
olor. In yellow, the CST (C) ; in blue, the Cg (C) ; in red, the IFO (Cmax) ;in orange, the SLF (Cmax) ; in green, the ATR (C).
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Fig. 4.12 � Deterministi
 tra
king results on �ve major �bers bundles. Fromtop to bottom and from left to right : ATR, Cg, IFO, ATR, SLF
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eθ,ϕ eθ,ϕ eθ,ϕ eθ,ϕ

Fig. 4.13 � Illustration of the simpli
es used in the di�erent update s
hemesin 2D, with a 8-neighbors system. From left to right : (1), (2), (3) and (4).

Fig. 4.14 � Isosurfa
es of C for Cingulum (top), and Cmax for IFO (bottom).From left to right, s
hemes (1), (2), (3) and (4) were used.
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Con
lusion généraleLe travail de thèse dont il est rendu 
ompte dans 
e manus
rit a porté surl'appli
ation de méthodes de 
al
ul de plus 
ourts 
hemins à di�érentes pro-blématiques tirées du domaine de l'imagerie médi
ale : segmentation de vais-seaux et de réseaux de vaisseaux pour di�érentes modalités, et 
al
uls de
artes de distan
es dans la matière blan
he à partir de données d'IRM dedi�usion à haute résolution angulaire.D'un point de vue théorique, sa 
ontribution prin
ipale est une présentationuni�ée de di�érentes versions des Fast-Mar
hing � donnant une vision géomé-trique de l'algorithme, et permettant d'e�e
tuer une preuve de 
onvergen
erelativement simple dans le 
as le plus général. Le 
hapitre 
orrespondantse veut également une tentative de 
lari�
ation par rapport à des référen
es
onsidérées 
omme 
lassiques, mais qui 
ontiennent néanmoins nombre d'im-pré
isions. Le 
÷ur de 
ette thèse porte sur des appli
ations de 
es algo-rithmes.Du point de vue appli
atif, une idée 
entrale du travail présenté est 
ellede se pla
er dans des espa
es où l'orientation des stru
tures anatomiques
onsidérées est représentée expli
itement. Ce
i est évidemment naturel etimportant dans le 
adre de 
al
uls de 
artes de 
onne
tivités au sein de lamatière blan
he, les données que nous avons à disposition rendant essen-tiellement 
ompte de l'orientation des fais
eaux de �bres. Mais nous avonségalement montré l'intérêt d'introduire 
e genre de méthodes dans le 
adrede segmentation d'images bidimensionnelles, pour lesquelles il n'y a au
uneinformation a priori 
on
ernant l'orientation des stru
tures à segmenter.Dans le 
adre d'images bidimensionnelles, nous avons proposé un formalismepermettant de segmenter de façon robuste des stru
tures tubulaires, tout enévaluant leur rayon. Les appli
ations à di�érentes modalités, et en parti
u-175



176 HARDI-tra
king using shortest pathslier l'extension proposée à la segmentation à partir de �ot optique suggèreque notre méthode pourrait trouver d'autres appli
ations dans le 
adre del'imagerie médi
ale. Le travail 
on
ernant la segmentation automatique de ré-seaux ouvre également des perspe
tives vers la 
réation de nouveaux systèmesautomatiques ou semi-automatiques de traitement d'images médi
ales. L'op-timisation du temps de 
al
ul n'a pas été une préo

upation 
entrale de notretravail. Son amélioration pourrait permettre l'in
lusion de nos méthodes dansdes interfa
es de type livewire.Con
ernant les appli
ations au 
al
ul de 
artes de 
onne
tivité dans la ma-tière blan
he, l'algorithme que nous avons proposé � s'il n'a pas en
ore ététesté sur des jeux de données 
omplet � o�re des premiers résultats inté-ressants : en un temps faible 
omparé à 
elui de l'a
quisition des données,il permet d'obtenir des 
artes de 
onne
tivité 
orrespondant à nos 
onnais-san
es anatomique, y 
ompris pour des fais
eaux �ns et/ou pro
hes d'autresfais
eaux, tels le Cingulum. Étant donné la dimension de l'espa
e 
onsidérépour 
ette méthode, notre parti pris a été de sa
ri�er la pré
ision � en par-ti
ulier, notre s
héma ne 
onverge pas vers une solution théorique � a�n dediminuer le temps de 
al
ul. Nous avons 
ependant veillé à 
onserver la pré-
ision dans les dire
tions prin
ipales des �bres. Une étude plus approfondiede 
e que nous perdons par rapport aux Fast-Mar
hing 
omplets serait inté-ressante. Il serait également judi
ieux de valider 
ette méthode sur une étudeà plusieurs sujets, et de la 
omparer à d'autres méthodes existantes.



Annexe AAppendix to shortest paths
omputationLet us 
onsider the framework des
ribed in II.4.A.1 Shortest paths 
omputation on a subset of
R
n or VFast-Mar
hing 
an be easily adapted to the 
omputation of shortest pathson a subset Ω of R

n or of the 
onsidered manifold V (se
tion I.3.1.2).A �rst solution is to put the points of the dis
retization outside Ω in A atthe beginning of the algorithm with +∞ value � or to simply remove themfrom the dis
retization. Therefore, those points will not be update, nor theywill parti
ipate in updates of their neighbors.However, in view of performing a gradient des
ent to 
ompute geodesi
s, itis desirable to dispose of the value of U at any point immediately outside
Ω � whi
h will allow a uni�ed evaluation of the gradient in Ω. One possiblesolution is to label su
h points, and to set their initial value to +∞. Thesepoints we behave as Ω points during the exe
ution of the algorithm, with theex
eption that they will not be used to update their neighbors values. Anevaluation of U will thus be available for those points, without perturbingthe values obtained for points in Ω. 177
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x

yx1
x2Fig. 1.1 � Approximation of the shortest path in the simplex used duringthe update step.A.2 Conne
tivity measuresA.2.1 De�nitions, 
omputationsIf we interpret the lo
al metri
 as the inverse of a speed tensor (se
tionI.3.1.6), we saw that a shortest path 
an be 
onsidered as shortest in a tem-poral sense. The average potential of the shortest path between two points
an then be interpreted as a 
onne
tivity measure between these two pointsin several 
ontexts (
hapter II). The standard deviation of speed, as long asits minimal value along the path 
an also be meaningfull for the 
onne
tivityassesment between two points (
hapter III.)In order to estimate those quantities, we propose to use a generalization ofthe pro
ess des
ribed in [163℄. Let us 
onsider an update step in a simplex ofmatrixX. Condition Cm implies thatM−2∇U 
omes from inside the simplex(�gure 1.1).Inside the simplex, we 
an approximate the shortest path to x with the linegoing through x of dire
tion M−2∇U . Let us denote by y the interse
tion ofthis line and the fa
et opposed to x in the simplex.Furthermore, we write y =

∑n
i=1 λixi in bary
entri
 
oordinates 1.1The equation of the opposite fa
et of the simplex is given by ∑ eiti = 1, where

e
def.
= X+

1. We immediately dedu
e the 
oordinates of point y. λ is then expressed as
X+ty.



A.2 Conne
tivity measures 179For any point x, let us denote by Ueuc(x) the estimated Eu
lidean lengthalong the shortest path from x to the origin. We will use the following ap-proximation :
Ueuc(x) ≈

n∑

i=1

λiUeuc(xi) + ‖x− y‖ (A.2.1)Average potential along a geodesi
 is then given by C = U/Ueuc.Similarly, we 
an estimate the square of the potential, averaged along a geo-desi
 (Usq) and the maximal potential (or the minimal speed) along a geodesi
(Umax).
Usq(x) ≈

n∑

i=1

λiUsq(xi) + ‖x− y‖‖x− y‖
2
b

‖x− y‖2 (A.2.2)
Umax(x) ≈ max{

n

min
i=1
{λiUmax(xi)},

‖x− y‖b
‖x− y‖ } (A.2.3)

Cmax = Umax 
an be seen dire
tly as a 
onne
tivity measure.The standard deviation of potential along a geodesi
 � Cσ =
√

Usq/Ueuc − (U/Ueuc)
2� measures the �regularity� of the traje
tory between two points.A.2.2 Numeri
al resultsWe will not give any 
onvergen
e results for the 
al
ulation of C, Cmax et

Cσ. We present results obtained for these measures for two di�erent potentialmaps in dimension 2. A 4 neighbors system is used in all the experiments.A.2.2.1 �Vessels� PotentialThe �rst tested potential mimi
s a vessel (
f. se
tion III.1). It is equal to 1in all the spa
e ex
ept in a shallow vessel in whi
h its value is 1/4 � whi
hfavors front propagation (�gure 1.2, left).Figure 1.3 presents the obtained results. The three 
onne
tivity measures areminimal inside the vessel.Figure 1.4 shows similar results for a noisy potential. Gaussian noise wasadded in the lower left part, and the vessels was 
ut in its right part (�gure
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Fig. 1.2 � Potentials used for testing 
onne
tivity measures. Noise free (left)and noisy (right).

Fig. 1.3 � Conne
tivity measures for �vessel� potential. Top, from left toright : U , Ueuc and Usq. Bottom, from left to right : the extremal intensityvalues being given, C (0.2, 1), Cσ (0, 0.4), Cmax (0.2, 1).
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Fig. 1.4 � Conne
tivity measures for noisy �vessel� potential. Top, from leftto right : U , Ueuc and Usq. Bottom, from left to right : the extremal intensityvalues being given, C (0.2, 1), Cσ (0, 0.4), Cmax (0.2, 1).1.2, right). Cσ et Cmax seem to be more sensitive to noise than C. These tomeasures are also more disturbed by the delete pie
e of vessel.A.2.2.2 Anisotropi
 PotentialThe se
ond potential is a uniform anisotropi
 potential. The tensor is alognedwith the axis, and horizontal speed is twi
e as mu
h as horizontal verti
alspeed. Figure 1.5 shows some results for this potential. C et Cmax exhibit theexpe
ted behavior � i.e. they are smaller in the horizontal dire
tion. Sin
ethe shortest paths are straight lines in this 
ontext, the expe
ted value for
Cσ is 0 at any point. In this experiments, we found exa
t values in this axisdire
tions. In other dire
tion, they range between 0 and 0.2, with maximumaround the starting point.
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Fig. 1.5 � Conne
tivity measures for anisotropi
 potential. Top, from left toright : U , Ueuc and Usq. Bottom, from left to right : the extremal intensityvalues being given, C (0.5, 1), Cσ (0, 0.5) � maximale value in the plane islower than 0.2, Cmax (0.5, 1).



Annexe BEle
trodes registration in EEGusing dis
rete optimizationThis appendix has been adapted from the resear
h report [140℄ 
orrespondingto a work published in [166℄. It is an early work in this thesis, independantfrom the rest of the presented methods. However, sin
e the algorithm des
ri-bed here is 
urrently used by EEG experimenters, and sin
e developping afull framework for the lo
alization of EEG ele
trodes from pi
tures would beof high interest, we believe it is interesting to reprodu
e this appendix as areferen
e.B.1 Introdu
tionEle
troen
ephalography (EEG) is a widely used method for both 
lini
al andresear
h purposes. Clini
ally, it is used e.g. to monitor and lo
ate epilepsy,or to 
hara
terize neurologi
al disorders su
h as sleeping or eating disordersand troubles related to multiple s
lerosis. Its main advantages are its pri
e
ompared to magnetoen
ephalography (MEG), and its very good time reso-lution 
ompared e.g. to fMRI. Conventionally, EEG readings were dire
tlyused to investigate brain a
tivity from the evolution of the topographies onthe s
alp. Nowadays, it is also possible to re
onstru
t the brain sour
es thatgave rise to su
h measurements, solving a so-
alled inverse problem. To thispurpose, it is ne
essary to �nd the ele
trode positions and to relate them to183



184 Ele
trodes registration in EEG using dis
rete optimizationthe head geometry re
overed from an anatomi
 MRI. Current te
hniques todo so are slow, tedious, error prone (they require to a
quire ea
h of the ele
-trodes in a given order with a devi
e providing 3D 
oordinates[106℄) and/orquite expensive (a spe
ialized system of 
ameras is used to tra
k and label theele
trodes[175℄). Our goal is to provide a 
heap and easy system for ele
trodelo
alization based on 
omputer vision te
hniques.In modern EEG systems, the ele
trodes (64, 128 or even 256) are organizedon a 
ap that is pla
ed on the head. system, ele
trodes, obtain su
h a on
eto obtain used as a some roots between the and those multiple pi
turesof the head wearing the 
ap from various positions. As a preliminary step,ele
trodes are lo
alized and their 3D positions are 
omputed from the imagesby self-
alibration (a te
hnique that re
overs the 
ameras' positions from theimage information [59℄) and triangulation. These are standard te
hniquesthat 
an provide 3D point 
oordinates with a quite good a

ura
y. Remainsthe problem of ele
trode identi�
ation whi
h labels ea
h 3D position with thename of the 
orresponding ele
trode. Finding a solution to this last problemis the fo
us of this paper. Note, that a good labeling software 
an also improve
urrent systems by removing a
quisition 
onstraints (su
h as the re
ordingof the ele
trodes in a given order) and by providing better user interfa
es.We propose a method that re
overs this labeling from just a few (two orthree) manually annotated ele
trodes. The only prior is a referen
e, subje
tindependent, 3D model of the 
ap. Our framework is based on 
ombinato-rial optimization (namely on an extension of the Loopy Belief Propagationalgorithm[148℄) and is robust to soft deformations of the 
ap 
aused both bysliding e�e
ts and by the variability in subje
ts' head geometry.B.2 Problem de�nitionThe inputs of our method 
onsist in :
• a template EEG 
ap model providing labeled ele
trodes, along with their3D positions (in fa
t, as we will explain further, an important feature of ourmethod is that only the distan
es between 
lose ele
trodes are used). L willdenote the set of labels (e.g. L = {Fpz,Oz, · · · }), and C = {Cl, l ∈ L} willbe their 
orresponding 3D positions. Cl 
ould be for example the average



B.3 Motivation 185position of ele
trode l among a variety of prior measures. However, in ourexperiments, it was just estimated on one referen
e a
quisition.
• the measured 3D positions of the ele
trodes to label, obtained by 3D re-
onstru
tion from images. We will denote by M = {Mi, i ∈ [1..n]}, these
n 3D points.The output will be a labeling of the ele
trodes, i.e. a mapping ϕ from [1..n]to L. Note that n 
ould be less than the total number |L| of ele
trodes in
ases where some ele
trodes are of the 
ap are not used.B.3 MotivationIn this se
tion, we dis
uss other possible approa
hes for the ele
trode labelingproblem. As it will be detailed in se
tion B.6, we have tried some of thesemethods without any su

ess. This will motivate our energy-based 
ombi-natorial approa
h. A simple method 
ould 
onsist in a 3D registration step,followed by a nearest-neighbor labeling. Let T be a transformation that sends

M into the spatial referential of C. A straight labeling 
ould be :
ϕ(i) = arg min

l∈L
d(Cl, T (Mi))where d(A,B) denotes the Eu
lidean distan
e between points A and B. A
-tually, we �rst tested two dire
t ways of obtaining an a�ne transformation

T :
• moment-based a�ne registration : in this 
ase, we 
omputed �rst and se-
ond order moments of the sets of points M and C and 
hoose T as ana�ne transformation whi
h superimposes these moments.
• 4 points manual registration : here, we manually labeled 4 parti
ular ele
-trodes in M and took for T the a�ne transformation whi
h exa
tly sendsthese 4 ele
trodes to the 
orresponding positions in C.As explained in se
tion B.6, we observed that these two approa
hes givevery bad average results. One 
ould argue that this might be 
aused by thequality of the registration. A solution 
ould be to use more optimal a�neregistration methods, like Iterative Closest Points[222, 22℄. Yet, a 
lose lookat what 
aused bad labeling in our experiments, reveals that this would notimprove the results. The main reasons are indeed that (i) the subje
t whose



186 Ele
trodes registration in EEG using dis
rete optimizationEEG has to be labeled does not have the same head measurements than thetemplate, and moreover that (ii) the 
ap is a soft stru
ture that shifts andtwists from one experiment to another.It is 
lear that only a non-rigid registration 
ould send M 
lose to C. Howe-ver, modeling the problem in term of spa
e deformation is not suitable. Forinstan
e, a Thin-Plate Spline[27, 79℄ based algorithm would not be adapted.A
tually, a more suitable framework 
ould be a deformable shape mat
hingone. We 
ould see our problem as a shape registration one, based on shape de-formation and intrinsi
 shape properties[183℄, rather than on deforming theambient spa
e in order to make the shapes mat
h. Be
ause of the topologyof the ele
trodes on the 
ap, relations between points are also of importan
e.In that sense, our problem is 
lose to the one investigated by Coughlan etal. [42, 5℄, whi
h they solve re
overing both deformations and soft 
orrespon-den
es between two shapes. Yet, in our 
ase, we see two main di�eren
es :(i) labeling, rather than shape mat
hing, is the key issue, and (ii) enfor
ingrelational 
onstraints between points are more important than regularizingdeformations. For these reasons, we propose a method based on optimal la-beling for whi
h the only (soft) 
onstraints are the distan
es between nearbypoints, without modeling any deformation.In the remaining of the arti
le, we �rst state our model and the asso
iatedenergy ; we then dis
uss our 
hoi
e for an energy minimization algorithm.Finally, we validate our method giving qualitative and quantitative resultson real experiments.B.4 Proposed frameworkThe 
omplete pipeline of our system is depi
ted �gure 2.1. As we alreadyexplained, we do not 
onsider here the 3D re
onstru
tion step, but only thelabeling one. From the measured data M , we 
onstru
t an undire
ted graph
G = (V,E), where V = [1..n] is the set of verti
es and E a 
ertain set of edgeswhi
h 
odes the relations between nearby ele
trodes. As it will be
ome 
learin the following, the 
hoi
e of E will tune the rigidity of the set of points M .Pra
ti
ally, the symmetri
 k-nearest neighbors or all the neighbors 
loser thana 
ertain typi
al distan
e, are two valid 
hoi
es. Given an edge e = (i, j) ∈ E
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3D re
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tion ϕ∗ = arg min(U(ϕ))
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Fig. 2.1 � Complete pipeline : we obtain 3D positions M (bottom left) byre
onstru
tion from several (usually 6) pi
tures (top left). A graph G then is
onstru
ted from these positions (bottom right). Considering a template 
apand asso
iated positions C (top right), we label the measured ele
trodes byestimating ϕ∗ = arg min(U(ϕ)). In this example, ϕ(i) = k, ϕ(j) = l.for i ∈ V and j ∈ V , we denote by dij = d(Mi,Mj) the distan
e betweenpoints Mi and Mj in the measured data and by d̃ij = d(Cϕ(i), Cϕ(j)) thereferen
e distan
e between the ele
trodes ϕ(i) and ϕ(j). In order to preservein a soft way the lo
al stru
ture of the 
ap, we propose to simply minimizethe following energy :
U(ϕ) =

∑

(i,j)∈E

ρ(dij, d̃ij) (B.4.1)where ρ is a 
ost-fun
tion whi
h penalizes di�eren
es between the observedand template distan
es. Note that, whereas the global one-to-one 
hara
ter of
ϕ is not expli
itly enfor
ed by this model, the lo
al rigidity-like 
onstraints en-for
e it. Graph rigidity theory is a very 
omplex domain (see for example [23℄as an introdu
tion), beyond the purpose of this arti
le.Following the 
lassi
al framework of Markov Random Fields (MRF) [125,21, 70℄, this 
an be rewritten as maximizing the following fun
tion :

P (ϕ) = exp(−U(ϕ)) =
∏

(i,j)∈E

exp(−ρ(dij, d̃ij)) =
∏

(i,j)∈E

Ψi,j(ϕ(i), ϕ(j))(B.4.2)Normalizing P by dividing by the sum over all the possible mappings ϕ,



188 Ele
trodes registration in EEG using dis
rete optimizationyields a Gibbs distribution over a MRF derived from graph G with L asthe set of possible labels ea
h vertex. The problem is thus redu
ed to the
lassi
al 
ase of �nding a Maximum A Posteriori (MAP) 
on�guration of aGibbs distribution :
p(ϕ) =

1

K

∏

i∈V

ψi(ϕ(i))
∏

(i,j)∈E

ψi,j(ϕ(i), ϕ(j)) (B.4.3)where K is a normalizing 
onstant and ψi(ϕ(i)) = 1 in our 
ase.B.5 Energy minimizationThe problem of �nding a MAP 
on�guration of a Gibbs distribution beingNP-
omplete [102℄, we 
annot expe
t to get an algorithm that optimallysolves every instan
e of the problem. Sin
e the seminal work of Geman & Ge-man [70℄, who proposed an algorithm that warrants the probabilisti
 
onver-gen
e toward the optimal solution � however with an unreasonable run-time� several methods have been investigated to maximize general distributionslike (B.4.3). Among these, minimal-
ut based methods (often referred to asGraphCuts), introdu
ed in 
omputer vision and image pro
essing by [74℄,has re
eived many attention (see [85, 29℄). These methods 
an a
hieve globaloptimization for a restri
ted 
lass of energies[84℄. For more general energies,approximations were proposed [169℄. As we experimented[140℄, these approxi-mations fail to re
over a 
orre
t labeling in our problem, whi
h belongs to a
lass of multilabel problems that are not easily ta
kled by GraphCuts.As a 
onsequen
e, we opted for a 
ompletely di�erent but widely spread al-gorithm, namely Belief Propagation (BP), and more pre
isely for its variantadapted to graphs : Loopy Belief Propagation (LBP). Please see [60℄ for are
ent referen
e. Brie�y, it 
onsists in propagating information through theedges of the graph : ea
h node i sends messages to its neighbors k, measu-ring the estimated label of k from its own point of view. Messages are passedbetween nodes iteratively until a 
onvergen
e 
riterion is satis�ed. This al-gorithm is neither guaranteed to 
onverge nor to 
onverge to an optimalsolution. However, it behaves well in a large variety of early vision problems.Empiri
al and theoreti
al 
onvergen
e of this family of methods were studied
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e in [141, 216℄.A
tually, we designed for this work an original and faster version of LBP. Itis an improved version of LBP based on the idea of [103℄.Let us �rst explain 
lassi
al LBP algorithm.B.5.1 LBPLoopy Belief Propagation (LBP) algorithm [60℄ is a widely used method to�nd approximate solutions to the MAP problem when the sub-modularity
ondition is not ful�lled. It 
onsists in propagating information through theverti
es of the mesh seen as a graph : roughly speaking, ea
h node i sendsmessages to its neighbors k, measuring the estimated label of k from thepoint of view of i.The LBP algorithm is derived from an exa
t algorithmworking on trees 
alledBelief Propagation (BP) or Max-Produ
t algorithm [149℄. In the original BP,messages measuring belief in a lo
al labeling propagate from the leafs tothe root of the tree. Then a ba
kward pass is 
omputed in whi
h label thatmaximizes the belief is 
hosen at ea
h node, knowing the label of the father.Let us introdu
e some notations :
r the root of the tree, s the appli
ation that maps a node to its sons and fthe appli
ation that maps a node to its father. L is the set of the leafs of thetree.
mi→j will denote the message passed by node Vi to node Vj. mi→j(l) is ameasure of how 
on�dent node Vi is that node Vj is given the l label, i.e.
ϕ(Vj) = l.We denote by bi(li, lf(i)) = ψi(li)ψf(i)i(lf(i), li)

∏

j∈s(i)mj→i(li) for li ∈ C and
lf(i) ∈ C the joint belief that node Vf(i) is assigned label lf(i) and node Vi isassigned label li.The BP algorithm is des
ribed in algorithm 8.When the graph is not a tree, the ordered treatment of BP is impossible toapply. However, disregarding the relation of paternity of the nodes, it is stillpossible to pass messages from nodes to nodes in the graph. A belief 
analso be 
omputed the same way as for BP. The idea of LBP is then to applythe message passing simultaneously or sequentially to all the neighboring



190 Ele
trodes registration in EEG using dis
rete optimizationAlgorithm 8 Belief Propagation
K = LForward passwhile Vi ∈ K doremove Vi from K
ompute mi→f(i)(lf(i)) = maxli(bi(li, lf(i))) for all lf(i) ∈ C.
ompute δ(lf(i)) = argmaxli(bi(li, lf(i))) for all lf(i) ∈ C.if all sons of Vf(i) have been treated, add Vf(i) to Kend whileBa
kward pass
ϕ̄r = δr

K = s(r)while Vi ∈ K doremove Vi from K
ompute ϕ̄i = δi(ϕ̄f(i))

K = K ∪ s(Vi)end whilereturn ϕ̄nodes of the graph. A stopping 
riterion is then to be de�ned - usually a
onvergen
e 
riterion or a �xed number of iterations.Let us adapt slightly the notations and denote by N(i) the set of neighbornodes of Vi.
mt

i→j is the message passed by node Vi to node Vj at time t. Let bti(li, lj) =

ψi(li)ψij(li, lj)
∏

k∈N(i),k 6=j m
t
k→i(li) for (li, lj) ∈ C2 be the joint belief forneighbor nodes Vi and Vj. Finally, let bti(li) = ψi(li)

∏

k∈N(i)m
t
k→i(li) be the

belief vector at node Vi and time t (taking into a

ount all the neighbors ofnode Vi).This leads to algorithm 9.This algorithm is neither guaranteed to 
onverge nor to 
onverge to an opti-mal solution. However, it behaves well in a large variety of early vision pro-blems. Empiri
al and theoreti
al 
onvergen
e of this kind of methods werestudied for instan
e in [141℄ and [216℄.Noti
e that the 
omplexity of one step of this algorithm is basi
ally |(C)|2|E|



B.5 Energy minimization 191Algorithm 9 Loopy Belief Propagationset m0
p→q(lq) = 1 for all (p, q) ∈ E.for t = 1, t ≤ T, t+ + dofor all (i, j) in V do
mt

i→j(lj) = maxli∈C(bt−1
i (li, lj))end forend forreturn ϕ̄i = argmaxli∈Cb

T
i (li)where |E| is the number of edges of the graph.B.5.2 Improving belief propagationSeveral methods have been proposed to improve both the 
onvergen
e andthe quality of results obtained by LBP algorithm. [213℄ proposed a slightlydi�erent algorithm based on a di�erent theoreti
al framework with inter-esting 
onvergen
e properties. More re
ently, [103℄ proposed an interestingmodi�
ation of LBP based on label pruning a

ording to 
urrent belief atea
h node, and on a 
hoi
e of a priority order for 
overing all nodes. But,their method show a greedy behavior, sin
e a label 
annot appear again on
eit has been pruned.A new intermediate and simpler version of LBP based on label pruning isproposed here. It is based on the idea that if a label is very unlikely for agiven vertex, it ought to be useless to use this label for the 
al
ulation of theoutgoing messages for this vertex. Hen
e, after ea
h step, the belief ve
tor

bti(li) is 
omputed for ea
h node as well as its maximum and minimum values
M t

i and mt
i. Then, ea
h label with a belief lower than the geometri
 mean gt

iof mt
i and M t

i is de
lared ina
tive for the next iteration only, e.g. it won't be
onsidered as a 
andidate label in 
omputing outgoing messages toward theneighbors of Vi (noti
e that the 
hoi
e of the mean is somewhat arbitrary. Itshould be adapted to the stru
ture of the belief ve
tor. For our appli
ation,we didn't noti
e e�e
t of the 
hoi
e of a threshold between 0.5 and 0.8 overspeed nor quality of results).Let us denote by Actti the set of a
tive labels of Vi 
omputed at iteration t.



192 Ele
trodes registration in EEG using dis
rete optimizationOur method is des
ribed algorithm 10.Algorithm 10 Fast Loopy Belief Propagationset Act0i = C for all Vi ∈ Vset m0
p→q(lq) = 1 for all (p, q) ∈ E.for t = 1, t ≤ T, t+ + dofor all (i, j) in V do
mt

i→j(lj) = maxli∈Actt−1
i

(bt−1
i (li, lj))set Actti = {li : li ≥ gt

i}end forend forreturn ϕ̄i = argmaxli∈Cb
T
i (li)The |C|2 fa
tor for ea
h edge in the 
omplexity for one step is then repla
edby a |C||C ′| where |C ′| is the number of a
tive labels of the original node.B.6 ExperimentsWe used 6 sets of 63 ele
trodes. Ea
h set 
onsists in 63 estimated threedimensional points, a
quired on di�erent subje
ts with the same EEG 
apand manually labeled. To test our algorithm as extensively as possible, weran the algorithm on ea
h set, taking su

essively ea
h of the other setsas a referen
e. We hen
e simulated 30 di�erent pairs (M,C). At least oneele
trode in M was manually labeled (see further).

E was 
hosen the following way : we �rst estimated a typi
al neighbor dis-tan
e by 
omputing the maximum of the nearest neighbor distan
e for allele
trodes inM , and then 
onsidered as belonging to E, every pair of distin
tele
trodes within less than three times this distan
e. In order to a

elerateand enfor
e 
onvergen
e, we used the three following te
hni
al tri
ks :
• we used our modi�ed LBP algorithm
• we added a 
lassi
al momentum term [141℄
• denoting by Vf the subset of V of the manually labeled ele
trodes, we addedthe set of edges Vf × V to E, allowing a

urate information to propagatequi
kly in the graph.



B.6 Experiments 193Although non indispensable, this led to a mean running time of less than11s on a standard 3GHz PC and to a smaller number of non 
onvergingoptimization.The 
ost-fun
tion ρ was of the form ρ(x, y) = x
y+ǫ

+ y
x+ǫ

where ǫ is a smallpositive 
onstant. We did not noti
e sensitivity with respe
t to this 
hoi
e, asfar as the following key 
onditions are ful�lled : (i) penalizing di�eren
es bet-ween x and y and (ii) penalizing small values of x or y. This latest 
onditionenfor
es (yet does not warrant) a one-to-one mapping ϕ.Di�erent experiments where 
arried out. First, the prior 
onsisted in ma-nually labeling ele
trodes Fpz, Oz, and T8. In that 
ase, our method re
o-vers all the ele
trodes, whi
h was, as expe
ted, not at all the 
ase with ana�ne registration+nearest neighbor approa
h (see �gure 2.2). A
tually, weobserved that labeling (Oz, T8) seems su�
ient. Yet, without any furtherdata, we do not 
onsider that labeling two ele
trodes only is reliable. Figure2.4 shows a result on a 
ase where a�ne registration does not work and the�nal 3D re
onstru
tion with our method.To demonstrate the robustness of our algorithm, we also tested hundredsof other 
onditions, in whi
h 1, 2 or 3 randomly 
hosen ele
trodes were"manually" labeled. Non-
onvergen
e was only observed for non reasonable
hoi
es of "manually" labeled ele
trodes : indeed, if they are 
hosen on thesagittal medium line, there is an undetermination due to the left-right sym-metry of the 
ap. This does not o

ur when the ele
trodes are set by a humanoperator. The 
lassi�
ation error rates are low (see �gure 2.2 again) but notnegligible. This makes us plead for a manual labeling of two or three �xedand easy to identify ele
trodes, e.g. (Fpz,Oz, T8).Finally, we also su

essfully tested 
ases for whi
h n < |L|, i.e. when someele
trodes are missing : if a few ele
trodes were forgotten in the 3D re
ons-tru
tion pro
ess, our algorithm should still be able to label the dete
ted ones.This should allow us to �nd whi
h ele
trodes were forgotten, to 
ompute theirapproximate 3D position from the template 
ap model and to use this infor-mation to dete
t them ba
k in the pi
tures. To 
arry our experiments, weremoved randomly from 1 to 10 ele
trodes in the data sets to be labeled. La-belisation was performed using the (Fpz,Oz, T8) prior as explained above.Results are synthetized �gure 2.3.
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NC mis
lassi�ed labelsA�ne registration (moment based) - 48.7%A�ne registration (4 manual points) - 21.3%Our method - (Fpz,Oz, T8) manually labeled 0% 0%Our method - (Oz, T8) manually labeled 0% 0%Our method - 3 random ele
trodes labeled 0% 0.03%Our method - 2 random ele
trodes labeled 0.3% 0.2%Our method - 1 random ele
trode labeled 4.2% 3,7%Fig. 2.2 � Classi�
ation errors. NC gives the per
entage of instan
es of theproblem for whi
h our method did not 
onverge. Mis
lassi�ed labels per
en-tages are estimated only when 
onvergen
e o

urs.missing ele
trodes mislabeled ele
trodes1 0%2 0%3 0.01%4 0.02%5 0.02%6 0.04%7 0.04%8 0.3%9 1.1%10 1.1%Fig. 2.3 � Results with missing ele
trodes.B.7 Dis
ussionExperiments show that our framework leads to fast, a

urate and robustlabeling on a variety of data sets. We 
onsider providing on the WEB ina near future an 
omplete pipeline in
luding our algorithm - ranging from3D re
onstru
tion of ele
trodes to their labeling. Su
h a system would onlyrequire a standard digital 
amera and would imply minimal user intera
tion
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Fig. 2.4 � A sample result. M is in red and C in green. Top left : 63 esti-mated 3D ele
trodes positions. Top 
enter : referen
e. Bottom left : subsetof a labeling with the moment based algorithm ; C4 is wrongly labeled CP4,and F1 is labeled F3 (not shown). Bottom 
enter : a subset of 
orre
t 
orres-ponden
es retrieved by our algorithm. Top and bottom right : full labelingretrieved by our algorithm, superimposed with anatomi
al MRI(manually labeling three ele
trodes).Note that the �exibility of our MRF formulation allows di�erent priors. Weplan for instan
e to use the 
olor of ele
trodes on the images as a furtherprior for labeling. This 
ould lead to a fully automated system, where nouser intera
tion would be required.
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