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Introduction

L’informatique est la science du traitement automatique de I'information. La
vision par ordinateur en est une branche, dont I’'objectif est le traitement au-
tomatique d’informations de nature visuelle. Elle est née dans les années 70
comme une branche de I'intelligence artificielle. Son projet initial était de do-
ter des ordinateurs ou des robots d’une vision similaire a la vision biologique
— une application typique étant de permettre a un robot muni d’unes ou plu-
sieurs cameéras de se déplacer de facon autonome dans son environnement.
Parmi les problémes auxquels la vision par ordinateur s’intéresse figurent
donc la reconstruction tridimensionnelle de I’environnement a partir d’une
ou plusieurs images, la séparation d’une image en composantes pertinentes —
par exemple un objet et son arriére-plan — appelée segmentation, puis 1’ob-
tention d’information de plus haut niveau concernant I’environnement par
exemple reconnaitre tel ou tel objet — en vue d’interagir avec celui-ci.

Ce programme général est loin d’étre résolu, mais en empruntant a de nom-
breuses disciplines, telles les mathématiques, le traitement du signal et ’ap-
prentissage, la vision par ordinateur a néanmoins développé un grand nombre
d’outils permettant 'analyse et le traitement d’images ou de séquences d’images,
ouvrant la voie a des applications dans de nombreux champs.

En paralléle d’applications dont le bénéfice social est sujet & caution ap-
plications militaires et videosurveillance — la vision par ordinateur a permis
des progrés considérables dans le cadre de [“imagerie médicale. L’émergence
récente de nouvelles modalités d’imagerie (IRM et ses variantes, MEEG,
PET...) a permis des avancées importantes en terme de diagnostic de pa-
thologies et de compréhension du fonctionnement des étre vivants, mais a
également créé un besoin d’outils permettant d’analyser des données de plus

en plus volumineuses, dont le traitement manuel par un expert peut s’avérer
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trés couteux en temps, voire impossible.

Ce travail de thése propose quelques applications du formalisme des plus
courts chemins a la segmentation de structures anatomiques dans des images

médicales issues de modalités diverses.

Outline

Chapter [ proposes a general viewpoint of shortest paths problems in discrete
or continuous spaces, and mentions some applications of this formalism in
computer science, as well as in other domains. It introduces some notions
about shortest paths in Riemannian manifolds, and in spaces equipped with
a potential, i.e. in which displacement speed is not necessarily constant in the

whole space.

Chapter II details some algorithms to compute shortest paths. The exposi-
tion focuses on Dijkstra algorithm in the discrete case, and on Fast-Marching
in the continuous case. We propose a unified presentation of those two algo-
rithms. A new convergence proof of Fast-Marching is proposed in the case of
a bidimensional space equipped with an isotropic potential and discretized on
a regular grid. Our formalism is extended to more and more general spaces.
Finally, we show convergence of Fast-Marching on a Riemannian manifold
equipped with an anisotropic potential, provided the discretization satisfies

some condition we will detail in the sequel.

The next chapter are dedicated to applications of this algorithm to analysis
of medical images. A central idea of our work is to compute shortest paths
in abstract spaces — derived from the image space — but which contain more
information, typically concerning the orientation of the anatomical structures

we wish to segment.

Chapter III shows how such a formalism can be used to segment tubular
structure in bidimensional images — typically blood vessels, but we will show
that it can also be applied to road segmentation in satellite images. Our
main contribution is to use a four-dimensional space which takes into account
orientation and radius of the vessels. We will show several advantages to use

such a space.
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We will also apply this framework to the segmentation of cortical images
from a blood flow analysis, and propose an extension to an iterative method

for the segmentation of a network of tubular structures.

Chapter IV is an application of shortest paths to the analysis of diffusion
MRI with high angular resolution data. We will use a space of dimension five

to perform this task.

The first appendix tackles problems related with shortest paths computa-
tions. It tackles the computation of shortest paths in the presence of a mask
which forbids a part of space, as well as the computation of some connectivity
measures.

The second appendix consists in an independent work about the semi-automatic
labelling of electrodes in Electroencephalography (EEG). This work is a part
of a not-yet developed system to quickly obtain tridimensional calibration of

electrodes during EEG experiments.

All this work has given rise to publications in computer vision and medical
imaging conferences. Chapter III is adapted from the article Eztraction of
Tubular Structures over an orientation domain published in the conference
Computer Vision and Pattern Recognition 2009|167|, with Gabriel Peyré
and Renaud Keriven, and of SIFT-based Sequence Registration and Flow-
based Cortical Vessel Segmentation applied to High Resolution Optical Ima-
ging Data|168|, published in International Symposium on Biomedical Imaging
2008 with Thomas Deneux, Ivo Vanzetta and Renaud Keriven. The end of
the chapter is published as a research report, and is currently under review
in Medical Image Analysis. A part of the work exposed in chapter IV was
published in Medical Image Computing and Computer Assisted Intervention
2009, with Maxime Descoteaux and Renaud Keriven.

Finally, appendix B corresponds to an independent work published in the
Medical Image Computing and Computer Assisted Intervention 2007[166]
with Renaud Keriven, Théodore Papadopoulo and Jean-Michel Badier.

Implementations were done mainly in C++, using the CertisLib library, de-
veloped by the CERTIS team. Visualisation and analysis of data were perfor-
med using Matlab, Paraview and Brain Vizu for the work presented in chapter
IV.
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Chapitre 1

Shortest paths

« Le chemin le plus court d’un point a un autre est la ligne droite,

a condition que les deux points soient bien en face I’'un de 'autre. »

(“The shortest path from one point to another is the straight line,

provided that the two points are squarely in front of each other”)

(Pierre Dac, Francis Blanche)

Introduction

Computing shortest path is a specific instance of optimisation problem, and
a major human concern : each time we ask ourselves if we would better
take motorway rather than trunk road, which route to follow in order to go
from Saint-Malo to Pointe-a-Pitre, how to solve a Rubik’s Cube in a minimal
number of moves, how to get our knight from ¢3 to e5, or if we should take
line 6 then 13 rather than 8 then 13 to go from Daumesnil to Varenne, we are
attempting to solve a shortest path problem — or at least to compare several
paths which have the same extremities — typically the place where we are,

and the place where we want to go.

In view of the diversity of these problem, the commonplace that the shortest
path between two points is a straight line is clearly not sufficient. Short does
it mean short in space or in time ? What is a straight line in a Rubik’s Cube ?

In short, what are we talking about exactly ?

13
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e In which space are we moving? Is it a tridimensional Euclidean space? A
relativist space? A discrete space? Are there obstacles?

e What is a path in that space?

e What is the cost associated with this path? For example, do we want to
find the shortest or the quickest path?

Now come the more alarming questions :
e is there a (one only) shortest path?
And, if the answer is yes,

e how to compute it ?

Section 1.1 describes a general framework for shortest paths, and enunciates
some basic properties. Section 1.2 focuses on discrete shortest paths. Finally,
section [.3 describes many framework for continuous shortest paths problems,
details some applications, and gives some mathematical properties of the

considered spaces.

Contents
1.1  Generalities on shortest paths . . . . . . ... ... 14
1.2 Discrete Shortest Paths . . . . ... ... ...... 17
.21 Directed graphs . . . . . . .. ..o 17
[.2.2  Undirected Graph . . . ... .. ... ... .... 18
1.2.3 Existence and uniqueness of shortest paths . . . . 18
1.2.4 Applications . . . . .. .. ... ... ..., 21
1.3 Continuous shortest paths and distance maps . . 22

1.3.1  Different frameworks for continuous shortest paths 22
[.3.2 Theoretical aspects . . . . . . ... ... ... ... 33
I.4 Conclusion. . . . . . . . o v it it i i i i e 38

I.1 Generalities on shortest paths

Let E be a set.
In this work, we are interested in a specific class of shortest path problems.

In particular, we will impose that :
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e a path has a starting point and an ending point if we denote by Cy the
set of paths from s € E to t € E, the set {Cy |(s,t) € E?} is a partition
(which can contain the empty set) of the set of all the paths C,

e the paths can be concatenated if they are compatibles : if C} € Cxy and
Cs € Cyz, then C1@QC, € Cxz : @ is a partial associative binary operation
on the set of paths C,

e a cost function ¢ from C to F' is defined — where F' is an ordered set
equipped with a binary operation + which is compatible with the order
relation. We furthermore impose that ¢(C1QCy) = ¢(Cy) + ¢(Cy) for all
compatible paths.

e for all s € F, there exist a path in Cy, with null cost, and neutral for Q.

Let us also introduce the notion of subpath :

Definition 1.1.0.1 (Subpath)
Let C € Cy be a path from s to t. C" is a subpath of C if and only if there
exists two paths Cy and Cy such that C = CQC'QC,.

In the sequel, we will focus on the FF = R™ case, in which the cost can be
naturally interpreted in terms of length (or duration) of the path.

We then define the distance between two points s and t by :

YECst (I 1. 1)
+00 otherwise

inf it C.,
d(s, ) d:{ inf e(v) ifCu 7D

We then have

Proposition 1.1.0.1

d satisfies the triangular inequality

Proof : Let us consider s, t and v € E. If Cs; = () or Cy,, = 0, we clearly have d(s,u) <
d(s,t)+d(t,u). Otherwise, we chose € > 0. By definition of d(s,t) and d(¢,u), there exists
two paths v1 € Cg and o € Cy,, such that c(y1) < d(s,t) + €/2 and c(y2) < d(t,u) + €/2.
Then, v1@~y, € Cysp and ¢(y1@Qy2) < d(s,t) + d(t,u) + €, hence d(s,u) < d(s,t) + d(t,u).

O

If we fix a point s € E, and if the distance from s to any other point in E is

finite, we get the following function :
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(1.1.2)

1, E — Rt
° t — d(s,t)

called distance map from s.

We call shortest path between two points s and t any path of Cy; with length
d(s,t) :

v*(s,t) = argmin () (I.1.3)

YECst
Existence or uniqueness of shortest paths are not guaranteed, and strongly
depends on the properties on the space E.
Equipped with this nutshell formalism, we already can enunciate the follo-

wing property :

Proposition 1.1.0.2
A subpath of a shortest path is a shortest path.

Proof : Let C € Cg be a shortest path, and C’ € C,, a subpath of C. Let C; and Cs be
two paths such that C' = C;QC"QC5. We have ¢(C) = ¢(C1)+¢(C")+¢(Cy). Let us assume
that C’ is not a shortest path from u to v. Then there exists a path C” € C,, such that
c(C") < ¢(C"). Then, C;QC"QC, € C4 and ¢(C1QC"QAC,) = ¢(Ch) + ¢(C”) + ¢(Cs) <
¢(C), which is absurd.

Shortest paths between sets The shortest path notion can be generali-
sed to starting and ending sets of points.
If SC E and T C E, we can define the set of all path from S to T as

Csr = | Cut (1.1.4)

seS
teT

and then the distance between those sets as

inf ¢ ifCy #0
d(S,T) = { V€CsT ) 7 = inf d(s,1) (I.1.5)

; scS
+o00 otherwise b
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along with the distance map from S :

uw ) Eo— R 1.6
STt = d(S ) (11.6)

A shortest path between S and T is a path reaching the distance (if it exists) :

~*(S,T) = argmin ¢(v) (L1.7)

v€CsT

In the sequel, we will handle shortest paths and distance maps problems
in which the entire space is know a priori — not discovered progressively
during computation, which is often the case for motion planning problems in
robotics.

Such problems can be classified in two main classes, depending on the conti-

nuous or discrete character of the space E.

1.2 Discrete Shortest Paths

Most of the discrete shortest paths problems can be recast in graph theory
terms. A very good introduction to graph theory and its algorithms can be

found in [3].

I.2.1 Directed graphs

Let (S, A,w) be a graph in which S is a finite set of vertices, A C S x S
is the set of edges linking the vertices and w : A — R is a weight function
defined on the edges.

We call path from s € S tot € S any succession (So, dg, S1, -« -, Qm—1,Sm) M €
N of edges and vertices such that

® 50=35

® 5, =1

o Viec[0,m—1] a; = (s, 8i11)-

We thus define the concatenation of two compatible paths in the following

way :
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(SO7 ag, - . - Am—1, Sm)@(t(]a b07 s bn—17 tn) -

(I.2.1)
(80, ag, .. .-Am—1,Sm = to, bo, e bnfl, tn)
and the length of the path (figure 1.1) v = (59, @g, S1, - - -, Am, Sm) as
c(y) = Zw(ai) (I.2.2)
i=1

In particular, (sg) is a path from sy to itself, of null length.

FiG. 1.1 — An example of graph. (s, (s1,52), S2, (52, 54), S, (54, 85), S5) is a
path from s; to s5 of length 6.

1.2.2 Undirected Graph

Shortest paths problems on undirected graphs is a specific case of the previous
problem. To any undirected graph, we can associate a directed graph by

replacing every edge by two opposite edges of same weight.

1.2.3 Existence and uniqueness of shortest paths

The existence of a shortest path is not guaranteed on a graph :
e there can be no path between two vertices (figure 1.2, left).

e there can a path but no minimal path (figure 1.2, right).
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Fic. 1.2 - Left : a graph without path from s to t. Right : a
graph without shortest path from s to ¢t. The negative length loop
(1,(1,2),2,(2,4),4,(4,3),3,(3,1),1 allows to find arbitrary small paths bet-

ween the points.

However, we have the following property :

Proposition 1.2.3.1
Let (S, A,w) be a graph, such that w: A — R*. Let s andt € S.
If Csy # 0, then a shortest path exists from s to t.

Proof :

e First, notice that for all path in Cg, there exist a shortest path without loop in Cy,
e then notice that there is a finite number of paths without loop from s to ¢, hence the

existence of a minimal length path, which is also a shortest path in Cg.

In particular, in a strongly connected graph with positive weights, shortest

paths exist between any pair of vertices.
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Here is an interesting property of shortest paths between ont vertex s and
all other vertices.

Proposition 1.2.3.2

Let (S, A,w) be a graph, with w : A — RT. Let s € S. Then, there exist a

tree A build from S such that

e s is the root of the tree;

e t is a node of the tree if and only if there exists a shortest path from s to
£

o if the paternity relation in A is denoted by p, (s...p(t),(p(t),t),t) is a
shortest path from s to t.

Proof :

This tree is simply a set of edges which contains a shortest path from s to all accessible
vertex t, and which is minimal for inclusion.

Such a tree is called shortest paths tree (figure 1.3).

F1G. 1.3 — Distance map and shortest path tree from vertex s

In section II.1.1, we will explain how to compute such distance maps and
shortest path trees.
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1.2.4 Applications

A huge amount of problems can be recast in this framework. It is pointless
to try and draw up a complete map of possible applications. Let us cite some
classical problems.

e A classical application of shortest paths on graph is the computation of
trajectories over transportation networks. Edges correspond to portions of
roads, and vertices to intersections. Weights account for the time to travel
along a portion of road.

e This framework is used to compute routing in electronic data networks [205].
Vertices represent routers (or other nodes), and edges represent connexions
between routers. Weights depend on the available bandwidth.

e The computation of knight moves we mentioned earlier can be casted in
a search of shortest path on a graph (figure 1.4). More generally, for all
system with a finite number of states, and transitions between those state,
finding paths between two states can be done by computing shortest paths

in a graph with constant weights.

S

<
X
&

LA

FiG. 1.4 — Undirected graph corresponding to the possible moves of a knight
over a chessboard. Each vertex corresponds to a square, each edge to a pos-
sible move. In red, yellow, and green : three paths from e3 to ¢5 in a minimal

number of moves.

e More generally, all dynamic programming problems can be formulated in
terms of shortest paths problem in a graph. |131].

e Some linear programming problem can be recast in discrete shortest paths
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Shortest paths
in R™ Shortest paths
in a subset
\ of R"

Shortest paths Shortest paths
in R™ in manifolds
+ speed

|

Shortest paths
in R™

-+ anisotropy

Shortest paths
in Riemannian

manifolds

Fi1G. 1.5 Different continuous shortest paths problems

computation |40].
e Many motion planning problems can also be formulated in this frame-
work [113].

I.3 Continuous shortest paths and distance maps

1.3.1 Different frameworks for continuous shortest paths

In this section, we will present some shortest paths problems which occur
in different domains, and require different theoretical frameworks. Figure 1.5
synthesises these frameworks.

Let us consider a continuous space £/ for practical purposes, F is generally
a subset of R™ or a finite dimension manifold.

We define a path as a function C° and piecewise-C! from [0,1] to E — this
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(0)

F1G. 1.6 — A path in R?

condition being sufficient in order to define the length of such a curve '. If f
is such a path, the eztremities of f are f(0) and f(1) (figure 1.6).
The concatenation of two paths f; : [0,1] — E and fy : [0,1] — E is defined

as

Ll dg,{te[o,l/g] —  f(2t) 151)

tell/2,1] —  fol2t — 1)

1.3.1.1 Shortest paths in R” : the straight line strikes back

Let us define £ = R", with n > 1.
The length of a curve f is defined by

£(f) / (0]t (13.2)

Notice that this quantity is invariant when one reparametrise the curve. In

particular, if we use the arc length, we get

L(f)
£(f) = / 1/(5) s (13.3)

Istill, it is not necessary : it is possible to define a length for a more general class of

curves, namely rectifiable curves
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with [|f/(s)]| = 1.

In this framework, we can show the following property :

Proposition 1.3.1.1
Let x and y € E. Then, the shortest path from x to y is the straight line, i.e.

frrte ety

Proof :
If fis a curve with x and y extremities, we have L(f fo If*'@)||dt = ||z — yl|

Iy £@dtll < fy 1 @)ldt = £(1)

O

The distance between two points corresponds with Euclidean distance, i.e.
Us(t) = ||t — s]|2. In particular, level sets of distance map are circles in 2D,
and spheres in 3D (figure 1.7).

F1G. 1.7 — Shortest paths in R2. Level sets of distance map are circles, and

shortest paths are segments.

Things are becoming more interesting when one consider a set .S of starting
points instead of one point. If S is a closed set, a compacity argument easily
shows the existence of a shortest path from .S to any point of E. This shortest
path is still a straight line. Figures 1.8 and 1.9 demonstrate this on two

examples.
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F1G. 1.8 — Shortest paths to 2 points s; and s,. Level sets are represented in
black, and shortest paths in red. The blue line correspond to points which are
equidistant from s; and s, i.e. to the shock points of the fronts emanating

from s; and ss.

Fic. 1.9 — Shortest paths to a segment. Level sets are represented in black,
and shortest paths in red.

These results can be interpreted in terms of front propagation [188] : let us
consider a starting set S, and a front propagating outside S with a constant
speed 1. The Us(t) = « level set corresponds to the front position after a
time a. A classical analogy is the propagation of a forest fire propagating at

constant speed from an initial hearth [30)].

Applications The interpretation in terms of front is extremely productive.

As illustrated figure 1.8, the meeting points between two fronts correspond
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to points that are equidistant from starting points in S. This results can be
generalised to an arbitrary number of starting points, which paves the way
toward two applications : the calculation of Voronoi diagrams [188] if S is
discrete, and skeletization of objects © by using S = §Q [204, 173, 78].
Another application is shape offsetting, which consists in finding level sets
of distance functions to a given set [188] — with applications to growing of
obstacles in motion planning.

Computing the distance function to a closed curve is also a classical step of
level sets [188] implementations in order to obtained a smooth function
which zero level set correspond to the curve.

This formalism was also used in images denoising in 2D or 3D, leading to
algorithms that can guarantee topological properties of the object to be de-
noised, such that homotopy to a sphere [108, 202, 13].

A list of other applications can also be found in [57].

1.3.1.2 Shortest paths on a subset of R”

From a mathematical point of view, things become much more complex as
soon as the considered space is a strict subset of R"™.

As an example, let us consider the plane without the origin. There is no
shortest path from (1,0) to (0,1) : paths with a length arbitrarily close to 2
exist, but no path of length 2(figure 1.10).

(0,1) (1,0)

FiG. 1.10 — Existence of shortest path is not guaranteed in a subset of the

plane

However existence of shortest paths is guaranteed for several specific cases.

Applications. An important application of this formalism is again motion
planning : this calculation allow to plan trajectories of robots in an envi-

ronment consisting of obstacles, or in which some position are forbidden.
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Approximate numerical methods exists for general spaces [99, 96, 68, 69].
However, it is often advantageous to take advantage of the shape of obstacles
in order to obtain dedicated exact algorithms.

For example, if the obstacles are open polygons, it is possible to compute an
exact solution in polynomial time. Indeed, this problem can be reduces to a
calculation of discrete shortest path in a wvisibility graph, or by decomposing
space into connected cells [138]. An interesting introduction to this topic can
be found in [113].

1.3.1.3 Local speed

Let E be a subset of R™, and let us consider a mapping p : E — R — called
potential over E.
Keeping the curve definition above, we can define the length of a curve with

respect to this potential as

C,(f) / (IS (@)t (13.4)

If we parametrise the curve by arc length, we have

L(f)
£ = [ plstss (13.5)

hence

=< p >y (1.3.6)

where < p > is the average value of p along the curve. If we interpret £,(f)
as a travel time to go from f(0) to f(1), £(f) being the Euclidean length of
the curve, p can be seen as the inverse of a local speed of displacement.

For practical purposes, as soon as the considered potential map is non-trivial,
there is no analytical form for the shortest paths. Solution will not reside any-
more in exact algorithms, but on numerical methods leading to approximate
solutions — one of these methods will be thoroughly detailed in I1.3.
However, exact algorithms exists in some specific cases, for example if the

2D space is partitioned into polygons in which speed is constant [137].
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From a theoretical point of view, there is no general guarantee of the existence
of shortest paths. As an example, let us consider the space E = [0, 1]* with

potential

et { 1 siy<1/2

= T, - .
P (z.9) 2 otherwise

Then, there is no shortest path from (0,1/2) to (1,1/2).
Nevertheless, we will see an existence theorem for shortest paths in a more
general framework, which guarantees in particular the existence of shortest

paths in [0, 1]™ when p is continuous.

Applications

This problem is particularly important from an historical point of view in

geometrical optics [110]. The refractive index of a medium is defined as the

ratio between light celerity in void over light celerity in that medium, ¢.e.
E ¢ . The Fermat’s principle enunciates that the trajectories followed by

light rays are of extremal duration. If we consider a medium F and an index

n(x) for each point, the duration of light journey along a trajectory f is thus

given by

1
o) = < [ s (13.7)
Shortest paths for this length correspond to possible trajectories of light rays
— and in particular we find that lights propagates along straight lines in an
homogeneous medium.
The refraction laws (or Snell-Descartes’ laws), which describe the behaviour
of light rays at the interface between two homogeneous media can also be
retrieved from this equation (figure 1.11).
This formalism is also applied in image analysis to contour segmentation
either as an alternative to active contours [38| or in the framework of seg-
mentation by region growing [127, 132, 19]. In |65, 95|, criteria similar to 1.3.6
were also analysed and used to perform contour segmentation. The basic idea
— which we will detail further in chapter II — is to compute shortest paths

or distance maps in the image plane, setting the potential such that shortest
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F1G. 1.11 — Left : refraction of a light ray at the interface of two homogeneous
media of index n; and ny with ny < n;. The ray follows the shortest path,
and its trajectory tends to remain longer in the half-plane with smaller index.
More precisely, we have sin(f;)n; = sin(6y)ns. Right : illustration of this
phenomenon at the interface between air and water — water index being
approximately 1.3 times bigger. Bottom : distance map and shortest paths
in a plane separated in two domains of indices 1 and 4 s being in the area

of bigger index.
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paths or level sets of distance maps follow interesting curves in the image
e.g. blood vessels or objects contours.

This kind of methods can be paired with watershed algorithms in order to
segment cluster of objects [114].

Distance map and front calculation is also used to estimate arrival times
for seismic waves in Earth’s mantle [189], or to model propagation of electric
signals in the framework of human heart electrophysiological modelling [184].
In [64], the same formalism is used in order to compute correspondences
between curves.

Finally, the shape from shading which consists in reconstructing a tridi-
mensional shape from its illumination — needs the use of a formalism close to
the one of distance maps |94, 174, 99, 162|. It is also the case for the problem

of reconstructing a depth map from the normals of the surface [31].

1.3.1.4 Anisotropy

Here is another interpretation of shortest paths computation in a space with
a potential. Let E and p be defined as previously. Let us define for all z € F
and for all v € R”

def.

Ivlle = p(@)[Iv]. (1.3.8)

If we consider equation (1.3.4), we have,

£,(f) = / 17/l ot (13.9)

We meet, again the definition of length proposed in (1.3.2), but in a space
equipped with a different metric.

From now, it is easy to generalise these definitions to anisotropic metrics,
for which the potential depends not only on the location, but also on the
orientation of the curve.

Let E be a subset of R™, and let us consider a mapping g : F — S (R),
where ST (R) is the set of symmetric positive definite matrices of size n x n.
For every point x € FE, it defines a metric : for all v € R", we define

def.

[Vllg@) = VVvTg(x)v (1.3.10)



1.3 Continuous shortest paths and distance maps 31

FiGg. 1.12 A path on an ellipsoid

Then, we can define again the length of a curve as follows :

1
ef.
£ [ POl 1.3.11)
(1.3.8) is therefore a specific case of this equation when g(z) = p(z)*I, is an
homothety.
Applications

This formalism was mainly used in medical imaging in order to model elec-
trophysiological phenomena [185], or to reconstruct fibers if diffusion tensor
imaging [87, 115].

1.3.1.5 Shortest paths in a manifold

Let £ = V be a manifold [176] of dimension k, embedded in R™ for some
n € N.

We can define the length of a curve on this manifold as

£(f) e / (0]t (13.12)

where ||.|| denotes the Euclidean norm in R™.

Figure 1.12 shows an example of path on an ellipsoid embedded in R3.
Shortest paths problems on manifolds appear in trajectories issues on the
surface of the Earth  which is of capital interest to allow navigators to reach
one point from another as fast as possible.

It is possible to show that shortest paths on this surface are portions of great

circles on the sphere (figure 1.13). This result is known at least from Aristotle.
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F1G. 1.13  Shortest paths on a sphere are portions of great circles

A geometrical demonstration of this result is proposed in [124], as well as
results concerning shortest paths on cylinder or cones.

Leonhard Euler |55] was the first one to tackle this problem on a general
surface. For a convex surface, Euler solves it by noticing that a shortest path
between two points corresponds to a tighten thread on the surface going
through those points.

The shortest path notion on a manifold is related with the notion of geodesic.
A geodesic is defined a a curve with normal acceleration on the manifold. It
is possible to show that a shortest path on a manifold is a geodesic, and
that a geodesic is locally a shortest path [66]. These to notions are generally
mixed up in the computer vision community, and we will use either of the

two words in the sequel.

Applications

Several geometric problems are based on shortest paths computations on ma-
nifolds : parametrisation of surfaces |182], sampling of surfaces [155], Voronoi
diagrams calculation on surfaces [188, 99].

Shortest path calculation on polyhedra was also studied, an is applied to

problem in motion planning |2, 158, 157].

1.3.1.6 Shortest paths on a Riemannian manifold

Let V be a manifold of dimension k& embedded in R" for some n € N. For

all z € V, let us denote by T,(V') the tangent space of V' at z. It is a vector
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space of dimension k such that for any curve f on the manifold, and for all
point f(t) € V on the curve, f'(t) € Tyu (V).

A Riemannian manifold (V,g) is defined as a manifold V' such that for all
point = € V, T,(V) is equipped with a symmetric positive definite bilinear
form g(z) : T,(V) x T,(V) — RT called potential. Usually, a continuity
constraint is imposed for g. Excellent introduction to the study of Rieman-

nian manifolds can be found in [116] and |66].

IVle = Vg(x)(v,v) (1.3.13)

We can now define the length of a curve on V' by

() / 17/l ot (13.14)

g can be interpreted as the inverse of a speed tensor.

Therefore, shortest paths on manifolds is a specific case of this framework,
in which g(x)(v, v) corresponds with the Euclidean norm of the embedding

space.

Applications When the potential is isotropic, this formalism can be used
to segment targeted curves on surfaces. In [203; 10|, the authors proposed to
use it to segment sulci on cortical surface. It was also used to segment surfaces
in tridimensional images — viewed as an union of shortest paths belonging to
that surface |6, 7].

1.3.2 Theoretical aspects

It is possible to prove existence of geodesics and to demonstrate properties
of the distance maps in the most general case we have mentioned. Complete
proofs come under non-trivial mathematics, and will not be detailed here.

However, we will give intuitive proofs in a few specific cases.
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1.3.2.1 Distance

Proposition 1.3.2.1
Let (V,g) be a connected complete Riemannian manifold, equipped with a
continuous metric. We define the length L of a curve as previously.

Then, the mapping d induced by L (1.1.1) is a distance function.

Proof :
We present a sketch of proof. A complete one can be found in [66].
Triangular inequality holds from 1.1.0.1.

Symmetry is derived from the possibility of travelling on the curve in both directions : if
f is a path from a to b, then ¢t — f(1 —t) is a path from b to a of same length. Symmetry

is obtained by considering the infimum of length of all paths from a to b.

The definite character is more difficult to show. Let us consider two distinct points s

and t. We will prove that d(s,t) > 0. Let us embed the manifold in some space R"

and let us consider the compact set By yn B(s, @) By continuity of the metric,

there exist ¢ € R such that for all x € By and for all v € T,(V) g(z)(v,v) > €||v].
Let us consider a path from s to ¢, and denote t, = i[r(L)fu{t € [0,1] | f(t) ¢ Bs}.
tefo,

Then, £,(f) > [o° [f/ O sydt > e [ 17O > el f5° /()] = 1251 Therefore, we have

d(s,t) > 6”82;”‘ >0

1.3.2.2 Geodesics

The Hopf-Rinow theorem [83] guarantees the existence of geodesics for a

large class of Riemannian manifolds.

Theorem 1.3.2.2 (Hopf-Rinow)
For any complete connected Riemannian manifold, and for any couple of
points (s,t) of the manifold, there exists a geodesic of minimal length between

s and t.
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1.3.2.3 Distance map properties

Recall that the distance map U(S) to a starting set is defined as U(S,t) =
d(S,{t}) for all t € V. We can check easily that

Proposition 1.3.2.3

Let (V,g) be a complete connected Riemannian manifold, equipped with a
continuous metric. Let S C 'V be a compact set.

Then U(S) is continuous.

In particular, the distance map to a single point is continuous.

However, even in the simplest cases, the distance map if not differentiable.
As an example, in the case of distance map to a point in R? (figure 1.7),
U, is not differentiable at point s. In the case of distance map to two points
(figure 1.8), the distance map is also not differentiable at points which are
equidistant from the two starting points.

Yet, we have the following property.

Proposition 1.3.2.4
If U is differentiable at t, then |V Us|igu— = 1.

Proof :
We provide a proof when E = R", equipped with a potential p. It can be extended to any
Riemannian space, but this requires technical tools we will not develop here.

If U, is differentiable at ¢, we can write

U (t+ db) = Us(t) + Vild.dt + o(|dt]).

Furthermore, Us(t + dt) being the length of the shortest path from s to ¢ 4+ dt, and the

norm being continuous, we have

U (t + dt) < Us(t) + p(t)|dt| + o(|dt]).

In particular, if we set dt = eV U, and decrease € toward 0, we have

[Vilds| < p(t)

Now let us consider a shortest path « from s to ¢. We set dt = (1) — (1 —€).
Let us define U(z) € Uy (v(z)). We thus have U’(z) = Vy@Usy (x), and x =1, U'(1) =
Vilds. ' (1) < [Vilks[[7/(1)]-

By the way, we have
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UL = UL =€) = e[y (t)]p(t) +o(e)

hence

and

|Vilds|: > p(t)

hence the result.

On the way, we also proved that v/(¢) and Vi are collinear.

O
Definition 1.3.2.1
We call Eikonal equation the following partial derivative equation :
HvaSHg—l(x) =1 with Vs € S Z/{S(S> =0 (1315)

The previous proposition enunciates that if the distance map is differentiable
at some point, it is solution of the Eikonal equation at that point. It would
be interesting to obtain a converse of this results, which would characterise
U, globally as a solution of Eikonal equation. This is a tough problem, since,
as we saw, U, is not differentiable at any point.

[13] introduced the notion of viscosity solution for a large class of partial

differential equations, allowing to circumvent this issue (figure 1.14).

Definition 1.3.2.2
We call w a viscosity solution of the Fikonal equation if and only if for any

mapping o € C1 (V') and for all xy € V local minimum of u — ¢ we have
HvroﬁpHg*l(zo) =1

This definition disposes of the differentiability constraint on u. Some physical
insight of this notion are detailed in [186].

A specific case of results proved in [13] can be enunciated as follow

Theorem 1.3.2.5
Let (V,g) be a Riemannian manifold, and S C'V a compact set.
Then, Us is the unique viscosity solution of the Eikonal equation (1.3.15).
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F1G. 1.14 — Illustration of the viscosity solution definition in dimension 1. u
is the distance function to two initial points. ¢ is a C*(R) mapping. zg is a

local minimum u — ¢. Then the equality |V,,¢| = 1 holds.

The following theorem also holds.

Theorem 1.3.2.6
Let (V) g) be a Riemannian manifold, and s, t € V.
Let 7y be a geodesic between s and t. Then, up to parametrisation, v is solution

of the following differential equation

(1) lUs
1g(v (1) "'V Us|l

v (t) =

with v(0) = t. (1.3.16)

Proof :

In the case of R™ equipped with a potential, we must show that

VywmUs

/ .
V() = — 2D with 4(0) = ¢ 1.3.17
O A (L340

The proof is immediately derived from collinearity of 9/(¢) and V) Us we observed during
the proof of 1.3.2.4.

This result can be generalised to Riemannian manifolds.

O

In the case of R™ equipped with a potential, this implies the orthogonality
between shortest paths and level sets of distance map (figures 1.7 1.8 1.9).

The last two results are extremely important for practical computation of
shortest paths and distance maps. Computing a distance map is reduced to
the problem of approximating the solution of a partial differential equation

(we will detail a method to do so in section 11.3), and computing a shortest
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path boils down to performing a gradient descent on the obtained map or
more precisely a descent along the characteristics of the solution [56] — which

aligns with with gradient direction in the case of an isotropic potential.

1.4 Conclusion

Shortest paths naturally appear in the modelling of several problems, either
in the discrete case (shortest paths in a graph) or in the continuous one
(shortest path in R™ or in a manifold). The explicit calculation of shortest
paths is thus of primary interest for the resolution of numerous problems.

The next chapter details some methods allowing to compute exact or ap-

proximate solutions to these problems.



Chapitre 11

Shortest paths computation

Introduction

This chapter is an attempt to propose a clear presentation of algorithms to
compute shortest paths — in particular Fast-Marching.

We will present Dijkstra algorithm for computation of shortest paths on
graphs (section II.1). Then we will show an fruitless attempt to use this
algorithm in a continuous framework (section I1.2). We will thus present
the state-of-the art solution to this problem — i.e. Fast-Marching. . Section
I1.3 will consist in a full exposition of the method — our formalism being
different than the classical one, which will allow both to have a point-of-
view unified with Dijkstra algorithm, and to perform easy generalisations. A
proof of convergence will be proposed in this case. We will therefore show
how to extend this algorithm to any dimension, and to anisotropic potentials
with principal components aligned with the grid. Finally, in section 1.4 we
will detail the algorithm and give a proof in the most general framework —
i.e. shortest paths on Riemannian spaces. This presentation, while keeping a
geometrical point-of-view, is a generalisation of results indicated in [186] and
[30].
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II.1 Discrete shortest paths computation

Depending on the targeted application, numerous methods exist in order to
compute discrete shortest paths.

We will restrict ourselves to the the problem of computing distance maps and
shortest paths from a fixed set of initial vertices (notice that it is possible to
compute distances between any couple of points using algorithms such that
Floyd-Warshall and Johnson [181] )

If negative values are permitted in the graph, there is no guarantee of the
existence of shortest paths between two vertices (figure 1.2). In this context,
finding a shortest path between to vertices is a NP-complete problem [92].
When the graph does not contain any loop of negative length, one can prove
that shortest paths exist, and they can be found using polynomial algorithms
such that Bellman-Ford algorithm [123, 1, 139].
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In the sequel, we will only consider graphs with positive weights. In this case,
our problem can be solved in polynomial time by using Dijkstra algorithm —
which we are going to detail.

Notice also that if all weights in the graph are equal to 1, dedicate algorithms

exists to compute shortest paths|19].

I1.1.1 Dijkstra algorithm

In this section, we will focus on methods to compute distance maps from
one given vertex s — along with shortest paths from any other vertex to
s. In the sequel, a graph will be denoted as (S5, A), where S represents the
vertices, and A the edges. Furthermore we will denote n = |S| and m = | A|.
w : A — RT is a weight defined on the edges of the graph. N(s) C S
represents the neighbors of s in the graph, and p “ masx{|/\/'(s)|} is the
maximal connectivity for a vertex. a

We have the following fundamental property for the distance map U, from a

vertex s on a graph.

Proposition I1.1.1.1
Us(t) = min U b
(t) = min Us(v) +w(v,?)

Proof :

For any neighbor v of ¢, we have U (t) < Us(v) + w(v, t).

Furthermore, let us consider a shortest path from s to ¢, namely (s,...u, (u,t),t) (cf.
1.1.0.2). Then, the sub-path (s,...u) is a shortest path from s to u. We then have Us(u) =
I(s,...u), and Us(t) = 1((s,...u, (u,t),t)) = Us(u) + w(u,t).

O

The proof also shows that if (s, ... u, (u,t),t) is a shortest path, the minimum
in (IT.1.1.1) is reached for v = u.

Some vertex s being chosen, Dijkstra algorithm |54, 119 allows to compute
the distance map U as long as a shortest paths tree in O(n(log(n)+p)) time.
At any stage, the algorithm keeps up an estimate d of Us. It is based on a
local update routine derived from I1.1.1.1. This routine allows to estimate d
for a vertex t, knowing values of d for its neighbors. Furthermore, it updates
the father p(¢) of ¢ in the shortest paths tree.
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Algorithm 1 update(t)
INPUT: A vertex .

for all v € N(¢) do
if d(v) +w((v,t)) < d(t) then
d(t) < d(v) + w((v,1))
p(t) —wv
end if

end for

Dijkstra algorithm travels all over the graph, and sequentially performs such
update steps. The order in which to perform these operations is critical.
A first attempt is to iteratively perform them on all the vertices. One gets

the algorithm described in 2.

Algorithm 2 Iterative algorithm for shortest paths computations
INPUT: A graph (S,A), s€ S
OuTPUT: Vit € V d(t) = U,(t)

Initialization:
Set d(s) = 0 and d(t) = +oo for all t # s.
p(s) =0

while convergence is not reached do
for allt € S do
update(t)
end for

end while

It is possible to show that n iterations are sufficient to reach convergence.
This algorithm thus runs in O(n?p) time.
However, it is possible to improve this complexity. Refining I1.1.1.1, we ob-

tain :

Proposition 11.1.1.2
U(t) = min U (v) +w(v,t)

veN(t)
Us (v)<Us (t)

This means that U value for a given vertex only depends on values of neigh-
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boring vertices with lower values in particular, the update routine is per-
forming useless operations.

This property — which introduces a causality or upwinding notion in U; —
allows one to design a new dynamic-programming-like algorithm to compute

‘ close” from s, and then

shortest paths : one can compute U, for vertices

extend the computation to further vertices. In the case when weights are all

1 in the graph, this corresponds to a breadth first exploration.

Three disjoint sets of vertices are kept up :

o A (alive) : the set of vertices for which d = U.

e 7 (trial) : the set of vertices for which an estimation d of U is available —
i.e. points being considered.

e F (far) : the set of vertices for which no estimation d of U is available

At every iteration, the algorithm selects a vertex ¢ € 7 with minimal d(¢)

estimation. One can show that d(t) = Us(t) for such a vertex. This vertex is

transferred in A. Its neighbors are transferred in 7, and their estimated dis-

tance is updated by using the value found for d The algorithm is synthesised

in 3 and 4.

Algorithm 3 update(v,t)
INPUT: A vertex v. A neighboring vertex t.
if d(t) +w((t,v)) < d(v) then
d(v) « d(t) + w((t,v))
p(v) 1t
end if

Figure 2.1 shows an iteration of the algorithm. At anytime during the com-
putation, 7 can be seen as a front propagating from s.

Dijkstra algorithm can be easily generalised to a set of starting vertices S :
one just need to replace 7 « {s} with 7 « S, and by setting Vs € S
d(s) = 0 during the initialisation.

Proof of correctness Let us prove the correctness of Dijkstra algorithm.
We want to prove that for any vertex ¢, we have d(t) = Us(t) after execution

of the algorithm.



44 Shortest paths computation

Algorithm 4 Dijkstra algorithm
INPUT: A graph (S,A),s€ S
OuTPUT: Vit € V d(t) = U,(t)
Initialization:
Set d(s) = 0 and d(t) = 4oo for all ¢t # s. Set A = 0, T = {s} and
F =V\{s}.
while there exists t € 7 do
Select t € T such d(t) is minimal.
T —T\{t}, A= AU{t}
for all v € N(t)\A do
if v € F then
F—F\{v}, T —« T U{v}
end if
update(v,t)
end for

end while

F1G. 2.1 — One iteration of Dijkstra algorithm. Black vertices : A. Red ver-
tices : 7. Green vertices : F. Vertex of 7 with minimal weight (in bold) is

selected, and transferred to A. The vertex under it is transferred from F to

7.
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At any time, and for every vertex ¢, d(t) > U(t) : indeed (s, ...p(t), (p(t),t),t)
is a path from s de ¢, and its length is d(t).

We are going to recursively show that at any time V¢ € A d(t) = Us(t).
Notice that this property holds after initialisation.

Let us consider the instant when a vertices of 7 of minimal distance is chosen.
let us denote by ty € 7 U F a vertex minimising U,(t). We have

Us(to) = min  Us(v) +w(v, to)

veN (to)
Us (’U)<Z/[s (to)

Furthermore, if v ¢ A, then Us(v) > Us(to). Therefore,

< )
U (to) > ve/\n;lé?mAL{S(v) + w(v, ty)

Let us consider all the update operation that occurred to ¢y until now. For
all neighbors v of ¢ in A, the operation d(ty) < min{d(to), d(v) +w((v, o))}
took place when v was transferred in A.

We thus have

d(ty) = vejI\I/l(ltl)lmAd(U) +w((v,tg)) = ve%ﬁm%(“) + w((v,tp)).

d(ty) = Us(ty) thus holds. Furthermore, for all v in 7, d(tg) = Us(ty) <
Us(v) < d(v).

In particular, d(ty) < d(v). The inequality is strict, unless if Us(ty) = Us(v).
We thus can assert that the set of vertices of 7 of minimal evaluated distance
coincides with the set of vertices of 7 of minimal actual distance.

The chosen vertex t is therefore a vertex with minimal distance, and we have
d(t) = U,(t), which concludes the proof.

Complexity Every iteration is of O(p) complexity. If an unstructured set
is used to implement 7, the selection of the minimal element in 7 runs in
linear time with respect to the size of 7. n iterations being necessary, the
overall time complexity of Dijkstra algorithm is thus de O(n(n+p)) C O(n?).
Many implementations were proposed to decrease this complexity. In parti-
cular, it is interesting to consider 7 as a priority queue. It can thus be im-
plemented as a heap[217, 62]. A heap is an ordered data structure in which
insertion and update of an element runs in logarithmic time, while access to
the smallest element runs in constant time. The complexity of the algorithm

therefore becomes O(n(log(n) + p)).
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Improving the running time Other improvements can be made to the

running time of the algorithm.

e If one is only interested in finding the shortest path between two vertices
s and t, it is possible to stop the algorithm as soon as t is transferred to A

which can bring a substantial gain of time by avoiding the exploration
of a large part of the graph.

e If a prior for distance map is available, it is possible to use meta-heuristics
such as A* algorithm, which allows to guide the exploration of the graph
in a supposedly “good” direction [150].

e When no precise prior is available, if one is only interested in quickly finding
an approximation of shortest paths, it is possible to use Best First Search-
like algorithms, which guide the exploration in some direction heuristically

— and stops as soon as the target point ¢ is reached [150].
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I1.2 From discrete to continuous — a first at-

tempt

Let us consider the problem described in 1.3.1.3 for Q = [—1,1] x[-1, 1] C R?
with a potential P. In this section, we present a first attempt to solve a

discretized version of this problem.

Let us discretize 2 with a regular grid with step h = 1/N : {%, F| —-N<i,j< N}.
We build a graph which vertices correspond to the grid points and which
edges link all points in a 4-neighborhood (figure 2.2).

F1G. 2.2 — Local neighborhood system with 4 neighbors : the 4 red vertices

are neighbors of the blue vertex.

Then we discretize the Eikonal Equation

IVU|| =P (11.2.1)

along the edges.

Let us consider two adjacent points x and y. We then have :

~ P(x) (I1.2.2)
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and

U(r) = U(y) + hP(z) or U(z) = U(y) — hP(z) (11.2.3)
In view of updating U(z) from U(y), we have the constraint U(z) > U(y)

and with thus select the first equation.

3

def.

Let us define the weight of an edge (z,y) as w(z,y) = hP(x). The obtained
graph is then “compatible” with the continuous problem, in the sense that
the length of a path in the graph is equal to the length of the corresponding
geometric path in the plane.

Therefore, we can apply Dijkstra algorithm to this graph in order to compute
distance maps and shortest paths (a similar formalism is proposed in |98, 101]
).

When the potential is uniform, many shortest paths exist between two dif-
ferent points, and they can be distant from the actual straight line shortest
path (figure 2.3).

\

o—0 0 ¢
o—o ’6/. *—0
./ *—o 0 ©

Fi1G. 2.3 Shortest paths obtained by Dijkstra algorithm with a 4-neighbors

system, for a uniform potential. The obtained shortest paths (in blue) bet-

ween the two blue points are distant from the actual shortest path (red).

Figure 2.4 shows the result obtained by this method for a uniform potential
over a bigger grid, with s = (0,0).

Proposition 11.2.0.3
After the execution of Digkstra algorithm for a discretization step N, , the

approzimation dy of Us is equal to dy (ﬁ, ]iv) = %' + %

In particular, as the discretization is refined, if we denote for all (z,y) €
1,12 dy(z,y) & dy (W—NJ%) we have lm dy(,y) = |o] + |y| =
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F1G. 2.4 — Results obtained by Dijkstra algorithm with a 4-neighbors system

for a uniform potential over a 100 x 100 grid, starting point s being at the
centre. Left : distance map (Us). Right : distance map (U,) along with level

sets (red), and some shortest paths from different points to s (cyan)

1z, y)ll1-

The trajectories are constrained to the axis directions and thus this methods

outputs an approximation of Manhattan distance from s (t — ||s — t||1)

instead of the correct Us =t — ||s — t||2 distance.

It is possible to consider bigger neighborhood-systems, so that trajectories

should follow more precise directions. For example, one can consider 8 or 16

neighbors for a generic point (fig 2.5).
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F1G. 2.5 — Local neighborhood-systems with 8 (left) and 16 (right) neighbors.

For both figures, red vertices are neighbors of the blue one.

At the sake of an increase of running time, ont can thus improve the quality
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of computed solutions (fig 2.6) in particular when the neighborhood-system
increases, level-sets get closer to circles, and the distance map gets closer from
its theoretical value. Figure 2.7 also shows some results for a plane separated
in two half-planes with constant potentials (1 and 4). The precision of the
results increase while the neighborhood-system become more important, but
the paths coming from the lower half-plane are still converging near the
interface, which is contradictory with the Snell-Descartes law.

Figures 2.14 (top) and 2.15 (bottom) show errors obtained by the algorithm
with different neighboring-systems for a uniform potential. Quality of the
results improves as expected. Still, for all the considered systems, the tra-
jectories are still constrained to follow a discrete set of directions, and the
algorithm remains unable to evaluate distances correctly on other directions,
even in refining the discretization.

Furthermore, if one which to increase the number of possible direction, one
need to consider from each point neighbors further away. If the potential if
varying quickly, this will result in a loss of precision — the neighborhood-
system establishes links between spatially far away points, potentially losing

precise value of potential between these two points.
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F1G. 2.6 — Distance maps, level sets and shortest paths for a uniform poten-
tial. Top : 4 neighbors. Middle : 8 neighbors. Bottom : 16 neighbors.
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F1G. 2.7 — Distance maps, level sets and shortest paths for a plane separa-
ted in two half-planes with constant potentials (1 and 4). Top : 4 neighbors.
Middle : 8 neighbors. Bottom Notice that even for the 16 neighbors expe-
riment, trajectories in the bottom half-plane are still far away from the true

solution.
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I1.3 Fast-Marching on a regular grid

The solution proposed in the last section is not fully satisfactory. Another
method, based on the acceleration of numerical schemes — through ideas ins-
pired from Dijkstra algorithm  was proposed in [187]. This approach

called Fast-Marching is a continuous version of the algorithms proposed in
the previous sections. It was initially written for the 2D case. The general
road map for Fast-Marching algorithm is basically the same than for Dijkstra
algorithm. A more precise update step allows to relax the constraint of pro-
pagation in a finite number of directions. In this section, we will present the
algorithm on a regular grid in 2D. The numerical scheme is equivalent to the
one proposed in |187| — despite a different shape — which will allow a direct
generalisation to more complex cases. We will propose a convergence proof
for our scheme  which will be easily extensible to nD and to anisotropic

potentials.

I11.3.1 Update step

The whole idea behind Fast-Marching update step is to bypass the constraint

NL -
N

FiG. 2.8 — From Dijkstra to Fast-Marching

of propagation along the edges (figure 2.8.)

Let us consider £ = [—1,1]?, discretized with a regular square grid with
step h, and a point (7, ) on the discretization. Its 4 neighbors are (i + h, j),
(¢t — h,j), (i,j + h) and (i,j — h). These five points define four triangles
{552)}i€[1.,4} and four edges {Si(l)}ie[l.A] (figure 2.9).

It is possible to discretize the Eikonal equation on each of the triangles.

As an example, on 552), we obtain
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(7’>J _h)

F1G. 2.9 — Neighborhood system induced by 4 neighbors in 2D.

_— (U(i + h,j]i —U(g) UGJ+ hi)l - U@J)) (I1.3.1)

and

denoting u = Ui, j), we have

2u —2u(U(i+h,j)+U(i,j+h)+U(i+h,j)* +U(i,j+h)*—h*P(i,§)* = 0
(I1.3.3)

The quadratic equation has 0, 1 or 2 solutions depending on the sign of

A 207 P (i, j)* = (U(i + h, j) = U(i, j + h))*.

Furthermore, we wish to have u > U(i + h, j) and w > U(i,j + h). The sum

of the roots of the equation being U(i + h,j) + U(i,j + h), only the biggest

root uy can satisfy this condition. We have

Ui+ h,5) + U(i,j+ h) + VA

A simple calculation shows that a sufficient condition so that uy > max{U (i+
h,j),U(i,j+ h)} is

(U(i+ h,§) —U(i,j+h))* < h2P(i, j)* (IL.3.5)
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Notice that this condition is stronger than the positivity condition of A’.

To sum up, we define :

T+y+4/2P2—(z—y)? . N2 2
02 (z,y) € R? 7 if (x—y) <P (I1.3.6)
+00 otherwise
s 0, UG+ h,5), U0, 5+ h)) (I1.3.7)

2) is +oo or a value :

In other words, s;
e which makes the Eikonal equation true in the triangle,

e which is superior to the values of other vertices of the triangles.

Similarly, let us define ng), 35(3) and si) the solutions in the triangles 52 ,

S§2) and S f)

Sé) = eég(yﬂ((](i'_'haj)7[](i’j_+-h))
(

s L0 (U= h), Ui, 5 — h)) (11.3.8)
s E 0, U+h3),U(,j—h)

Let us also define {si1 }iepi..a) as the update values obtained by discretizing

the Eikonal equation along the edges {Si(l)}ie[l,/q :

0z eR—az+ P (11.3.9)

( def (1

1= Oppa

(d“W)(Ui+h

So hP(i,5) )
(11.3.10)

e 1

g def. 9( (

sy X

hP(i,5)

def. (1)
ghP (4,9)

Let us define

0p : (a,b,c,d) € R* —
min{65 (a,), 05 (b, ¢), 65 (c, d), 05 (d, a), 63 (a), 6, (0), 6 (¢), 0 (d)}
(I1.3.11)
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The update scheme of Fast-Marching algorithm consists in computing the
solutions of Eikonal equation in all triangles and edges, and to select the

minimal value among them.

UG, j) = min {5y} = Onp,, (UG +h,5), Ui j +0), UG = b, ), U, j = h)
j=1.14
(11.3.12)
Notice that the update scheme in Dijkstra algorithm is
U(i,5) « min {s{"} (11.3.13)
j=1.4

Let us recall that in Dijkstra algorithm, the update step could be refined
by considering only neighbors with a value smaller than the current point
(property 11.1.1.2).
The same reasoning holds in the current situation : indeed, for all j € [1..4],
if we denote by Sj(-l) the edge ((7,7), A), sgl) > U(A), and if we denote by Sj@)
the triangle ((7,7), A, B), sgl) > max{U(A),U(B)}. An edge or a triangle
cannot be taken into account in the update if the value of one of its vertices
is strictly superior to the current value of (i, ).
let us denote by

S-(i,])
the set of edges or triangles which are adjacent to (7, j) and such that all its
vertices distinct from (¢, j) have a value inferior to U(4, j).

Then, the update step is equivalent to :

U(i,j) « min {s\} (11.3.14)
Ses_(i.5)

This formulation, in addition to allowing to save up computations, will also
be useful in the convergence proof.

This update state can be performed iteratively for all the discretization
points. However — as for Dijkstra algorithm — one can use causality in order
to choose a more clever order.

Fast-Marching algorithm is synthesised on figure 5.

As in Dijkstra algorithm case, in order to avoid unnecessary operations, the

update step can be performed by taking into account only triangles/edges
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Algorithm 5 Fast-Marching

INPUT: {L,Z| — N <4i,j <N} as a discretization of [0,1]% s € S.
OuTPUT: Vt € V d(t) = U(t)
Initialization:
Set d(s) = 0 and d(t) = +oo for all t # s. Set A = (), T = {s} and
F =V\{s}.

while there exists ¢ € T do

Select ¢ € T such that d(t) is minimal.
T —T\{t}, A —AU{t}
for all v € NV (¢)\A do

if v € ' then

F— F\{v}, T —TU{v}

end if

update v using equation (I1.3.14).
end for

end while

that contains the current point — and in the case of triangles, such that the

remaining point belongs to A.

Complexity. The analysis performed for Dijkstra algorithm holds. It shows
that the complexity of this algorithm is O(Nlog(N)), where N is the number
of points explored by the algorithm.

I11.3.2 Convergence proof

In this section, we will prove the convergence of this numerical scheme, i.e.
prove that when the discretization step h tends toward 0, the solution compu-
ted by the algorithm tends toward the viscosity solution of Eikonal equation.
Notice that another convergence proof is given in [174]  the authors are
using a different but equivalent formulation for the update step. The benefit
of our framework resides in the ease of generalisation of both the scheme and
the convergence proof to more complex cases.

Let us define
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: (@)
mini{s;’ t —1t
13:1..2{ J }
def. ]=1..4

S<h7 (.T,y),t, U) =

h
0 U+ h,y),U(x,y+h),U(x—h,y),U(z,y —h)) —t
_ Onp,y (U( Y), Uz, y+h),U( y), U,y —h)) (11.3.15)
h
The update scheme (I1.3.12) can thus be rewritten :
S(h, (i,5),U(, ), U) =0 (11.3.16)

The complete convergence proof lies on two steps.

e Proving that any fix-point of the discrete problem 11.3.12 tend toward the
viscosity solution of (II.2.1) — which is mainly a specific case of a general
proof made in 9] and taken up by [174].

The proof is based on three characteristics of the scheme (]9]) :

— monotony of the update scheme 11.3.12, which can be enunciated as
follows :
(I1.3.16) is monotonous if and only if

U<V = S(h, (i, ), 1,U) < S(h, (i, ), 1, V)

— stability of 11.3.12 : the scheme is stable if the solution to the discrete
problem exists, and is bounded with a bound independent from the
discretization step.

— consistency of 11.3.12 — which denote the fact that 11.3.12 s a discreti-
zation of Eikonal equation or an equivalent equation. In our case, this

can be written

lim S(h, (2", y), 0(a",y) + &+ &) = HVe, (2,y))
)=o)

for every function ¢ € C* bounded over E, and where
H(Veg, (z,y)) =0

is equivalent to Eikonal equation (H is called Hamiltonian associated

with the Eikonal equation).
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e Prove that the ordering of updates allows to compute such a fix-point. The
reasoning is somewhat similar to the one made during Dijkstra algorithm
proof. Notice that the first demonstration of this fact was given in [187],
yet with a different proof.

Some results. Some preliminary results will be needed during the conver-
gence proof.

Let us define Qp = {(z,y) € R? | (z —y)*> < P?}, Qf = {(z,y) e R*? | 2 >
yet (z—y)2 < P?}and Qp = {(z,9) e R** |z < yet (z —y)? < P2},

Lemma 11.3.2.1 Properties of 953)

Let (z,y) € Qp.

° 0532) 18 continuous over (p.

o if (z,y) € Qp, ar— 9}2)(:5 + a,y + a) is non-decreasing over R .
Y

o if (z,y) € Qp, ar— 9532)(:17, Y+ a) is non-decreasing over RY.

—y)? = P2, Qg) (z,y) = min{z,y} + P.

i
o if (z,y) € Qp, ar— 6’1(3) (x + a,y) is non-decreasing over RY.
if (
o if (

T

These properties are illustrated on figure 2.10.

FiG. 2.10 — Illustration of some properties of 6 : the function is non-

decreasing in all the directions indicated by blue arrows.
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Lemma 11.3.2.2 Properties of Qg)
. 9}1) s continuous over R.

° QS) 18 non-decreasing over R.
We can therefore deduce the following properties for 6p

Lemma 11.3.2.3 Properties of 0p
e Op is continuous over R

e Op is a non-decreasing function of each of its variables.

Proof :

e Using the continuity of Hg) and 953), 0p is continuous everywhere, except possibly in
points such that (a — b)2 = P?, (b—c¢)?> = P%, (c—d)? = P? or (d —a)? = P?. As an
example, let us assume that (a — b)? = P? and a > b. Then we have a = b+ P
Then Gg) (a,b) = a+b§\/ﬁ =202 — g4 P = Gg)(a).

Similarly, if @ < b, we get 6'2) (a,b) = 6% (b).
The Y mappings “stick” continuously on the border of the set where §(2) < 400, which

shows that 0p is continuous at those points.

e The growing of 0 results from the growing of Og) and 9532).

O

Continuity can be geometrically interpreted in the following way : let us
assume that for current values of U(i+ h, j £ h), the update is done from the
the ((4,7), (i+h,j), (¢, +h)) triangle — I1.3.5 being true in this triangle. Let
us also assume that U(i + h, j) increases until equality is reached in I1.3.5.
Then, the solution is equal to U(i + h, j), i.e. the gradient of U est collinear
with ((¢,7), (¢, 7 + h)). The update value for the triangle is then equal to the
update value for the ((4,7), (4,7 + h)) edge (figure 2.11).
Updates from edges are therefore continuously taking over from the updates
from triangles when the laters become impossible.
We now present the convergence proof of the algorithm :
Proof :
monotony :

Follows immediately from proposition 11.3.2.3.
stability :

The existence of a solution of discrete problem can be demonstrated by borrowing

an argument from [174].
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0@y P

"~ : o

F1G. 2.11  Continuity of ¢, : the update step from the Qg)(a) edge conti-
nuously taking over from the updates from «9532)(@, b) triangle when the gra-

dient becomes collinear with the edge — after an increase of b.

Let us consider an algorithm which apply the update state to all the points of
the discretization, in the same order as Fast-Marching algorithm, but an infinite
number of times (which correspond to the iterative version of Dijkstra algorithm
proposed in I1.1.1).
For every point (4,7), d(i,7) is thus non-increasing, and inferiorly bounded by 0.
Therefore it tends toward some limit denoted d; (%, 7).
After an update step over (i, 7), we have S(h, (¢,7),U(i,5),U) = 0. S(h, (i,7),t,U)
being continuous in ¢ and in U, S(h, (i,7),t,U) tends toward
S(h, (i,7),dit(i,7),d;t) along the iterations. Furthermore, after an infinite number of
iterations, we have S(h, (4,7),U(i,5),U) = 0. This implies S(h, (i, ), di(4, ), dit) =
0, and d;; is therefore a solution of the discrete scheme.
d;; is inferiorly bounded by 0. It is possible to show the existence of an upper bound
which depends on the diameter of E, on the minimal potential over E — which is
not zero by compacity of E an continuity of the potential.

consistency :
let us consider a function ¢ C* bounded over E, (z,y) € E, and £ € R**.
e Firstly, let us note that

iV = (2 + h,y) + €+ hPy (11.3.17)

and

stV —p@',y) — € _ Do y)
h h

+ Py (11.3.18)

tends toward

dep(2,y) + Poy = 9532, (dep(,y)) (11.3.19)
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when (2/,y') — (x,y), h — 0 and £ — 0.
Similarly, for the other edges, we find limits Hgl?y(—dwgp(x,y)), OSEL (dyp(z,y))

and ng)y(—dyw(x, Y))-

e Let us now consider Sf) triangle, and let us assume that (d,p(z, y)—dyp(z,y))? <
P2
P is continuous, and ¢ C*. For any h close enough to 0 and (2/,y’) close enough
to (z,y), we thus have (p(a’ +h,y') + & — (2, y' +h) — €)* = (p(@’ + h,y') —
e(@,y) + o y) + ey +h)? <h2P,,.
Then,

(2) 2£+sa(w’+h7y’)+so(w/7y+h’)+\/2h2Pf,y/ —(p(a’'+h,y")—p(a’y'+h))?
S =
1 2

and
s —p(ay) € _
h

Doz ,y') + D“‘W}Ew',y') + \/ng?,y/ _ (D”w(wﬁy’) _ D‘“w}iwﬁy’)y. (11.3.20)

h h

When h and (z',y’) converge toward their limits, this expression tends to

doip(@,y) + dyplw,y) + [ 2P2, — (dap(@, ) — dyp(,))? =
0P (dop(w,y), dyp(z,y)) (113.21)

Similar results can be obtained for the three remaining triangles :
= if (dop(w,y) + dyp(@,y))* < Py,
(2) ror
% tends toward 02 (d,p(z,y), —d,o(,y)).
if (~dop(x,y) + dyp(z,y))* < P,
(2) o
% tends toward 0 (—d,p(z,y), —d,o(z,7)).
= if (—datp(2,y) — dyp(,9))* < PZ,,
‘(2)_ APWANES
% tends toward 0 (—d o (x,y), dyp(z,7)).
Furthermore, these results remain true in the cases when (+d,p(z, y)+d,o(z,y))? >
Pfy — when the limit is 4-o0.

e Thus — outside the limit cases where (£d,p(z,y) = dyp(z, y))? = P?

'y We have

(B
Swm%y»ﬂfww+¢¢+@:“m%jhwww»

o 0P (dep(w,y),dyo(z,y), —dop(@,y), —dyp(e,y))  (113.22)

(«' )= (z,y)
§—=0
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It is possible to show that this equation still holds in the limit cases : for example,
let us assume that (d,¢(z,y) — dye(z,y))* = P;, and d@(x,y) > dyp(z,y). Let
us consider (('Tka Z/k)7 hk7 fk) - ((Jf, y)7 07 O)

let us denote by ((@y k), Yp(k))s Py(k)> Epr)) the subsequence made from terms
such that (o(zyew) + 1 Ypmy) = (@pw), Yoy +0)? <HPPZ . and

(T (k> Yo' (k) Pt () » S (1)) the complementary subsequence.

Let us consider s; = %ﬁ"y") Like above, we have

Jim sy = 02 (dep(@,y), dye(@,y)).

. . 5(1)7 Th Yk
Furthermore, we still have kgrfm%k"’yk) =0 (dyp(2,y))

As observed during the continuity proof of 6, these two quantities are equal. We
deduce that

min{s?, s1} — (xx, yr)
hy

The other cases can be tackled in the same way. Thus 11.3.22 is valid for any

— 0 (dop(z, ).

value of ¢.

The scheme is thus consistent with the following Hamiltonian

H(VSO’ (l‘,y)) déf- 9sz(dw%0(33’y),dy90(%y)’—dww(ﬂi,y)v—dy@(%y)) (11323)

Furthermore, (Y and #(® being non-decreasing, we have

H(Vy,(z,y)) =

min{6® (~|d. (2, )|, —|dy (2, y)]), 00 (=dyp(,9)]), 0 (=|dyp(z, y))}-
(11.3.24)

One easily sees that H(Ve, (z,y)) = 0 if and only if [V (z,y)|> — P2, = 0.
The scheme is thus consistent.

ordering :
the proof of Dijkstra algorithm can be exactly transposed here. For any point ¢
of the discretization, let us denote by d;;(t) the distance obtained by the algo-
rithm described in the stability proof.. d;; is thus a fix-point of the update scheme.
Furthermore, we haved > d;; (the first iteration correspond exactly to the one of
Fast-Marching algorithm, and the following iterations can only decrease the values
of each point.)
Let us counsider the Fast-Marching algorithm.
We are going to prove inductively that, at any step of the algorithm, Vt € A d(t) =
d;+(t). Notice that this property holds after the initialisation.
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Let us consider the time when a point with minimal distance is chosen in 7 . Let

us consider typ € 7 U F minimising d;;(t).

let us denote by

e S_(tp) the set of triangles/edges adjacent to ¢y and such that all the points of
the triangle/edges different from ¢ have a value smaller than d;; (o),

e S4(tg) the set of triangles/edges adjacent to ¢ty and such that all the points of
the triangle/edges different from ¢ are in A.

d;; verifies 11.3.14. Thus, we have

dit(to) = i (d;
¢(to) S}glgl_n(to)s]( t)

Furthermore, if v ¢ A, we have d;(v) > di(to).

We deduce dj;(to) > min 3it;<dit)
SieSa(to)

Let us consider all the update operation that occurred to ty until now. The update
from a triangle or an edge in S4(top) occurred when the last vertex but one of this

triangle or this edge was transferred in A.

We then have d(tg) = min s5= min s%(di)
SieSal(to) SjeSalto)

by hypothesis.

Then d(tg) < dit(tg). Furthermore, for all v in 7, d(tg) < d;+(to) < dit(v) < d(v).
In particular, d(tg) < d(v). This inequality is strict, unless if d;;(to) = dit(v). We
thus can assert that the set of vertices of 7 of minimal evaluated distance coincides

with the set of vertices of 7 of minimal actual distance.

The chosen vertex ¢ is therefore a vertex with minimal distance, and we have d(t) =

d;t(t), which concludes the proof.

The monotonicity condition will be the main obstacle to the generalisation

of Fast-Marching algorithm to more general Riemannian manifolds.

11.3.2.1 Improving the running time

The calculation (I1.3.12) request up to four resolutions of second degree equa-
tions. It is possible to reduce this amount of operations.

Let us define A, = (i — 1,j) and A = (i + 1,7) if Ui — 1,j) <U(i + 1,)),
A, =(i+1,j), and A, = (i —1,7) otherwise. Similarly, let us define A, and
A Up to a switch of two coordinates, we can assume that A, < A,. Figure

2.12 illustrates two possible configurations of 552), sgz), s:(f) and 35‘2). Let us
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(@)

J

F1G. 2.12  Some possible configurations for s

note that we can also draw points corresponding to values of sgl), sgl), sgl)

and sfll) :
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A case-study of the different configurations gives the following results :

Proposition 11.3.2.4

min{sy)} is

e cither reached for the ((i, ), Az, Ay) triangle if the corresponding value is
finite,

e or reached for the ((i,j), A,) edge.

To summarise, we define

s U(Ae)+U(Ay)+1/212 P(i,j)2 = (U(A2) ~U(Ay))?
* 2

(U(A,) — U(A,))? < h2P(i, §)?
= min{U(A,),U(A,)} + hP(i, )

otherwise

- if
U(i,j) < Ko

which reduces the number of operations to perform with respect to (11.3.12)

to at most one resolution of a quadratic equation.

Despite the different formulation, this scheme is equivalent to the one pro-
posed in [188, 174] :

(maX{Um - Ui—l,j7 Ui,j - Ui+1,ja 0})2 + (max{Ul-,j - Ui7j_1, Ui’j - Ui,j—i—la 0})2 = P(QZ-J)
(11.3.25)

Other improvements of the running time have been proposed, most of them

inspired by variations of Dijkstra algorithm.

e When one is willing to compute a shortest path between two points, it is
possible to stop the front propagation when the second point is reached.
Another approach consists in propagating fronts simultaneously from both
points, and to stop when the two fronts intersect. A gradient descent from
the intersection in each front will then give an approximation of the shor-
test path between the two considered points [50].

e In the same article, a freezing strategy is proposed which allows to stop
front propagation in high-potential areas.

e Inspired by Best First Search algorithm, |156] proposes to use heuristics

to drive the propagation of the front in the correct direction.
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e At the sake of a slight lost of precision, [219] has shown the possibility of
implementing the algorithm with a O(n) time complexity, using a untidy
priority queue data structure instead of a heap to implement 7.

Notice that all these strategies can also be applied to the more general ver-

sions of Fast-Marching algorithm we will describe in the sequel.

I1.3.3 Increasing the neighborhood system

Even if convergence of this algorithm is proved when the discretion steps
converges toward 0, it is not an exact algorithm. Figures 2.14 and 2.15 show
errors obtained by the algorithm. Unlike the results obtained by Dijkstra
algorithm, we can observe that the relative error vanishes as we move away
from the origin. This means dually that — for a constant potential — the
evaluated distance map converge toward its theoretical value when the the
discretization step tends toward zero.

The numerical error of the algorithm is more important in the neighborhood
of s, in directions where no edges are present in the neighborhood system. Not
unlike the case of Dijkstra algorithm, it is possible to improve the precision of
the algorithm by considering a more important neighborhood system (figure

2.13) as proposed in [16]. The presented system consists in 8 triangles and

8 edges.
5(2)
2 S?)
(2)
Sa S§2)
552) S7
S
5

Fi1G. 2.13  8-neighbors system for 2D Fast-Marching

The Fast-Marching algorithm remains the same. The update scheme consists
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in selecting the triangle or the edge which produces the minimal value. Ho-
wever, the are two differences with the previously exposed algorithm :
e We need to compute update values for triangles with a different shape
and therefore to find an equivalent of 11.3.1 for those triangles. It is a
specific case of a more general equation we will introduce in section I1.4.
e It is not possible to reduce the amount of necessary calculations as much

as in the previous case.

11.3.4 Numerical results

We compare numerical results obtained by the methods exposed in the pre-
vious sections.

Figures 2.14 and 2.15 shows results obtained by the increase of the neighbo-
rhood system. Figure 2.16 presents similar results for a space consisting of
two half-planes with uniform potentials 1 and 4 — for which it is possible to
compute the distance map with arbitrary precision.

Increasing the neighborhood system results in an improvement of the results
obtained by Dijkstra algorithm. However, as shown in 2.15, the error does not
vanish as we move away from the origin or dually when the the discretiza-
tion step tends toward zero. On the opposite, it is the case for approximation
computed by Fast-Marching algorithm.

Figure 2.17 shows some shortest paths computed from the distances maps.

11.3.5 Generalisation to nD

It is straightforward to generalise the presented algorithm to arbitrary di-
mension.

Let us consider a n-dimensional space, discretized with a regular grid, and
a neighborhood system consisting of 2n neighbors. Such a system defines
K, % 27 simplices of dimension n, K,_; %= (71‘)2”_1 = n2"! simplices of
dimension n — 1 ...K; = 2(n’j1) = 2n simplices de dimension 1 i.e. 3" —1
simplices (figure 2.18 shows some of these simplices in the case of dimension
4). These simplices are a generalisation of triangles and edges in dimension

2.
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| gy

F1G. 2.14 Relative errors obtained by the different algorithms for a uniform

potential over a regular 100 x 100 grid. Left column, top to bottom : the
potential, Fast-Marching with 4 neighbors, Fast-Marching with 8 neighbors.
Right column, top to bottom : Dijkstra with 4 neighbors, Dijkstra with 8
neighbors, Dijkstra with 16 neighbors. All the images are represented with

the same gray level scale : black : 0%, white : > 40%
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0.45
0.4 \ ’ -
0.35- =
0.3 B
— djikstra 4
0.25H M
—— djikstra 8
— djikstra 16
— FM4
0.2 M
— FM8
0.15 B
0.1 B
0.05 \ 4
e
0 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
0.35 T
0.31 (\/\/\/V\—\/\M/W-V\/\/\M/\ i
0.25 -
0.2 ——djiksta 4 R
— djikstra 8
— djikstra 16
— FM4
0.15 ——FM8 H
0.1 -
0.05 B
0 1
0 5 10 15 20 25 30 35 40 45 50

F1aG. 2.15 — Relative errors obtained by the different algorithms for a uniform
potential over a regular 100 x 100 grid. Top : maximum of relative error for
a fixed distance to origin. Bottom : Lo norm of relative error for a fixed

distance to origin.
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FiGg. 2.16  Relative errors obtained by the different algorithms for a
piecewise-constant potential over a regular 100 x 100 grid. Left column, top
to bottom : the potential, Fast-Marching with 4 neighbors, Fast-Marching
with 8 neighbors. Right column, top to bottom : Dijkstra with 4 neighbors,
Dijkstra with 8 neighbors, Dijkstra with 16 neighbors. All the images are
represented with the same gray level scale : black : 0%, white : > 40%
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F1G. 2.17 — Shortest paths obtained for a constant potential (fop), and for a
piecewise constant potential (bottom), for the Fast-Marching algorithm with
4 (left) and 8 (right) neighbors.

It is possible to discretize the Eikonal equation on each simplex, and thus to
obtain a generalisation of (I1.3.1) and (I1.3.3). Let us consider a simplex Sl(k)
of dimension k, and let us denote by vy ...wv; the values on its vertices. Let

us define u = Ul(iy,iy...1,). We have

VT —Uu Vp — U
R I1.3.2
U= (L ) 3

and

k k
ku® — QUZ v; + Z v? — h2P(i, §)?
i=1 i=1

(11.3.27)
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F1G. 2.18 — Some simplices adjacent to x in dimension 3.

Properties shown in 2D can easily be generalised.

In the case when

v?) + kh*P(i, 5)?

M»

k
def
AT Qv -

=1 =1

= kh*P

l\DIn—

(izk: ) >0 (I1.3.28)

=1 ]:1

the bigger solution of this equation is

e (D) + VA
Uy = n (I1.3.29)

In the case when A’ > 0, we thus have

Uy > Uy
=

Zle(vi —v) >0or (Zle(vi - vl)>2 < h2A (Cy)

If the set C of all conditions (C) is verified, we have A’ > 0 have VI uy > v.

We thus define



74 Shortest paths computation

Og) :(z;) € R*

Zleq;i-i,-\/k]??—% ?:12?:1(1’1‘_%')2 . 1
; it C (11.3.30)

+00 otherwise

s{k) 2t egﬁ(i,j)(U(il +ho i dy) . Ul ig+ R i) (I13.31)

and

(2

Op(at,...at a7,...a7) € RT" min (0. .ad)y  (11.3.32)

ail el

Therefore, we use the following update scheme :

Uiy, ... in) < min {sf)} = Onp, (Ui + Dy ooin), oo Ul 4 D),
j=1..K;

Uliy = hy o yin)ye o Ui, yin — b))
(11.3.33)

As in the case of 2D, it is possible to restrict the calculations to simplices
such that their vertices have values smaller than current value U(3, j).

The algorithm is then the same as in dimension 2.

Complexity. The update state requires 3" total computations for each
vertex. The complexity of the algorithm is thus a priori O(N(log(N)+n3")),

where NN is the number of vertices explored by the algorithm.

Correctness. The 2D proof can be exactly transposed. It mainly relies on

the following lemma :

Lemma I1.3.5.1
e Op is continuous.

e Op is non-decreasing in each of its variables.

For practical purposes, in order to check this condition, one just need to compute the
maximal solution of the equation. If this solution exists and is bigger than all the v;, then
C holds.
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Proof :

e Asin the 2D case, continuity is derived from the study of connections at points belonging
to the border of C conditions. More precisely, we can show that if equality holds in (C),
the solution obtained on the current simplex is equal to the solution obtained on the sub-
simplex obtained by removing the I*" vertex. This generalises the property illustrated
by figure 2.11 :

Assume that we are on the border of the domain defined by C. Then there exists [ such
that (Zle(vi - vl))2 = B2A', Y (v;— ) <0 and uy = v After some calculations,

we can write

i v Uk = DR2P2, = 35 X (05 = ;)
k—1

v =

hence

S 0 U = DR2PZ, = 350 X (05— 05
k—1 ’

which corresponds with the solution on the sub-simplex obtained by removing the

U = V] =
lth

vertex (this solution being clearly bigger than v; for all i £ 1).
e Growing is derived from growing of the #*) functions with respect to each of their

variables in the domain where they are finite.

O

The convergence proof is now exactly parallel to the one in 2D : stability
and ordering are proved in the same way. Monotony of the scheme comes
from monotony of fp. In order to prove consistency, we can demonstrate as

in dimension 2 that if we define

0 Ulxi4+h,...x,),...)—1
S(h, (21, ... 20),t,U) = Gt CICE . h--) (I1.3.34)

then we have

lim S(h, ('), o(z',y) + &+ &) =
(fb’u--wx%g:éwh--ﬁn) (II.3.35)
ehp(r,y)(dl‘p(xv y)v s anO(LE, y)v _dl(tp(x’ y)7 T dngp(as, y)’ )

This quantity vanishes if and only if V¢ satisfies the Eikonal equation.
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11.3.5.1 Improving the running time

The computation of (I1.3.33) requires up to the resolution of 3" quadratic

equations. As in the 2D case, it is possible to reduce this number of opera-

tions.
LetusdeﬁneAk = (21 ,Zk—i-h,Zn) lfU(Zl ,Zk—i-h,ln) S U(Zl,lk—
hy...i,), and U(iy ... i — h,...i,) otherwise. Up to a permutation of coor-

dinates, we can assume that U(A4;) < --- < U(A,).
We then define

S = ((iy .. in), Ay, ... Ay)
S = (i1 .. i), Aty Ans)

(11.3.36)

S = ((iy .. .in), A)
and s”...s! the corresponding values.

We thus have the following result — which generalise the result obtained in
I1.3.2.1 :

Proposition 11.3.5.2

e For all k € [1..n], for all simplex Sl(k) of dimension k, if s #+ 00 then
sk < sl(k).

e Forall k € [2.n] if s #+ 400, then sk # +00 and s < sk,

Proof :
Comes immediately from monotony properties of Ggpk) in Q’;,.

O

We can then use the following algorithm to compute the update step which
was proposed in the appendix of [99] :

which reduces the number of quadratic equations to solve to n — 1 instead of
3",

I1.3.6 A step toward anisotropy

The update scheme for an anisotropic is theoretically more complex than
the schemes we studied in the previous sections. It will be studied in full

generality in section I1.4.



I1.3 Fast-Marching on a regular grid 77

Algorithm 6 update(t)
INPUT: A vertex t = (iy...1,).

for k varying from n to 1 do
Compute s,
1If s& £ o0, Uliy...i,) s% and quit

end for

However, in this section, we will study a useful specific case of anisotropic
Fast-Marching algorithm on a regular grid — for which the principal compo-
nents of the potentials are collinear with the grid axis. For this problem, the
previously exposed method works directly. Notice that [186] rapidly men-
tions a method to solve the equivalent problem of finding distance maps for
isotropic potential on orthogonal irregular grid, without explaining precisely
how to solve the discretized equation.

Let us consider a n dimensional space, discretized with a regular grid. Let
us assume that for any point, the potential has the following expression :
9(2)(v) = X\p1v? + -+ -+ A\gpv? — i.e. the tensor g has its principal components
aligned with the axis of the grid.

Let us consider a simplex Sl(") of dimension n, and denote by v;...v, the
values on the vertices. Let us define u = U (i1, 19, . . . 1,,). Injecting the discrete

form of the gradient in 1.3.15, we have

> dai(u—v)* =1 (11.3.37)
=1

hence

n

; Asi (@)2 =1 (IL.3.38)

=1 =1

i=1

When
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N é At = ST, z + z Ah?P(i, )
k k
- Z Aoih2P(i, j)? (Z > Aaida vj)2) >0 (I1.3.40)

=1 j=1
the bigger solution of this equation is

def (Zf:l Amvl) v A
U9 = o (11.3.41)
Zi:l Ai

The update step still consists in computing the update values for each sim-

l\')l»—t

plex, and to select the minimal one. Similar calculations as in isotropic case
show the monotony on each simplex of the previous expression — hence we
can deduce monotony and continuity of the update scheme, and then its

convergence.

11.3.6.1 Improving the running time

Improving the running time is tougher in this situation.

However, we can notice that if we define A = (i1 £ h,...ix + h,...i; £
n), B = (i1 £ h,...17 — h,...i; £ n), and if we assert for example that
U(A) < U(B), computing solutions on simplices containing A is useless.
Indeed, such a solution is bigger than the one in the symmetric simplex
obtained by replacing A with B.

We thus define Ay = (i1 ..., ix+h, ... 0,) ifU( ... igth, o in) SU(iy ... ig—
h,...iy), and U(iy ..., i, — h,...4,) otherwise. Up to a permutation of coor-
dinates, we can assume that A; <--- < A,,.

We can use the following algorithm to compute the update value :

The total number of quadratic equation to solve is thus 2".

Figure 2.19 shows shortest paths and distance maps computed with this

method.
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Algorithm 7 update(t)
INPUT: A vertex t = (iy...14,).

Initialization:Set s, = +o0.

for k varying from n to 1 do
For all k-uplet of points (A4 ...A; ), compute the solution s on the
simplex (¢, A;, ... A;).
S, «— min{s, s, }

end for

Ulig...0n) < Sy

Fig. 2.19 Distance maps and shortest paths in anisotropic spaces. Top :
horizontal speed is twice the vertical speed. Bottom : in upper half-plane,
horizontal speed is twice the vertical speed. The opposite holds in bottom

half-plane.
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II.4 Anisotropic Fast-Marching, general case

In this section, we propose a scheme for the computation of distance maps
and shortest paths in Riemannian manifolds. We generalise results proposed
in [97] et [30]. This scheme is directly derived for the ones of previous sections.
It also relies on the computation of solutions for each simplices adjacent to
the current point. The smallest solution verifying conditions which generalise
I1.3.5 will be selected as update value.

We will also expose a convergence proof for a large class of cases. In the
case of isotropic potential, the condition for convergence is that for any point
of the discretization and any adjacent simplex, the angles of the simplex at
this point are acute. This is a generalisation of known results in dimension
2197, 30].

Notice that in the case of a regular grid in dimension 3, our scheme is equi-

valent with the one proposed in [163].

11.4.1 Solution computation in a simplex

Generalising the algorithms of previous section on Riemannian manifolds is
(i)
J

will find out, cases appear in which convergence of the method is lost.

straightforward. Only the computation of the s;’ changes. By the way, as we
Inasmuch as introducing anisotropic potentials does not result in extra diffi-
culty, we will directly describe the more general case.

The framework of this section in the one described in 1.3.1.6. Let V be a
Riemannian manifold of dimension n, discretized with a set of points. We
consider a neighborhood system around this point, which consists of several
simplices (2.13 and 2.18 are some examples in dimension 2 and 3).

V' is locally diffeomorphic to an open subset of R”, and we will work on such
a space to derive the equations in the sequel.

Let z be a point of the discretization of V. Let us consider a simplex S*) of
dimension k, adjacent to x. Up to a translation, we assume that x = 0.

The equation we want to discretize is as follow :

VU] =1 (I1.4.1)
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which we can rewrite

IMVU| =1 (I1.4.2)

where M is the n X n symmetric positive definite matrix associated with the
potential.
We denote by ' ... 2% the other vertices of the simplex, v = (v!.. .vk)T the

corresponding values, and

x| : (11.4.3)
gt

We want to estimate u = U(z) = U(0) such that (I1.4.2) holds.
Asserting U is affine on the simplex defined by 0,2!,...2". VU is therefore

constant on the simplex.
def.

For all 7 € [1..k] let us consider the function u;(\) = U(A\x;).
Differentiating this expression, we get : ui(\) =< VU,z' >  which is

(A
constant.

Furthermore, we have u;(0) = u and u;(1) = v’

We deduce

<VUz'>=v"—u (11.4.4)
hence
Z Uzl =v' —u (I1.4.5)
J

and rewriting this in term of matrices,

XVU =v —ul (11.4.6)

If we denote by X+ = (X'X)~'X! the pseudo-inverse of X, we have

VU = X*(v —ul) (11.4.7)

Notice that X, only depends on the geometry of the neighborhood, and can
thus be pre-computed.
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We also have the constraint (I1.4.1), which can be rewritten

VU'MMVU = 1. (11.4.8)

(XT(v —ul)))MMX" (v —ul) =1 (11.4.9)
If we define b = XM MX™, we thus have

(v —ul)'b(v—ul) =1 (11.4.10)

Hence
1= (v—1t1)b(v —ul) (11.4.11)
= u*(1'01) — 2u(v'bl) + vibv (11.4.12)

which is a quadratic equation in wu.
b is a symmetric positive definite matrix. We denote by < .,. >; the associa-
ted inner product.

The equation becomes

WL —2u < v, 1>, H||v|][f —1=0 (11.4.13)

When the grid is regular and the potential is isotropic with value P, we
have b = PIj, and we find the equation (I1.3.27). The case tackled in 11.3.6
corresponds corresponds to a diagonal matrix b.

This equation has roots if an only if

A= 1[5+ < v, 1 >5 —[[vI}][1]l; >0 (I1.4.14)

This has the following geometric interpretation : in the R™ space equipped
with the metric induced by b, the inequality is equivalent to the distance
from v to vect(1) being less than 1.

The bigger root is then

<V, 1>y VA

U9 =
11113

(11.4.15)
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I1.4.1.1 Link between anisotropy and geometry

In the anisotropic framework, if we define

X ZEXMtetU =MU (I1.4.16)

we get

b= X"TX*

and

VU = X" (v — 1u)

Calculations in anisotropic case are then equivalent to calculations in isotro-
pic case where simplices were deformed by the metric of space.
Therefore, from a theoretical, there is no major difference between update

steps in isotropic an anisotropic cases.

I1.4.1.2 Conditions for convergence

As in the regular grid case, the convergence proof relies on

e the fact that the solution on each simplex is a non-decreasing function of
its variables.

e the fact that the solution on each simplex is bigger that the values on other
vertices of the simplex.

This second condition can be written

(ul —v) >0 (Cy) (I1.4.17)

In the isotropic case, this has a simple geometric interpretation : it just asserts
that the gradient VU of the found solution must be in the opposite direction
with respect to all edges of the simplex (figure 2.20 (left)).

Let us look for the monotony condition on the simplex.

We start from equation (I1.4.15), and differentiate it with respect to v’. We
get
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Fi1G. 2.20  Geometrical interpretation of conditions C, and C,, for a bi-
dimensional simplex (isotropic case). Top : C,, corresponds to the gradient
being in the opposite direction with respect to the edges of the simplex. C,,
corresponds to the gradient coming from inside the simplex. Bottom : on
the left, a solution which satisfies C, but not C,,. Increasing the value of
the right vertex while keeping the norm of the gradient constant results in
a decrease of the solution (black arrows). On the right, a solution satisfying
C, and C,,.

Oug <P 1>VA+ <P TI><vI> - <P v><l 1>

ov' MR

(11.4.18)

or

= (0,0,... 1...,0,0) (11.4.19)
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hence

DIVA +b01 <v,1>—-bv<1,1> b(lu—v)

Vug = = (I1.4.20)
1[5V A VA
i.e. monotony on the simplex holds if and only if
busl —v) >0 (Cp) (I1.4.21)

In the isotropic case, this condition can be rewritten X VU < 0. From a
geometric point of view, it is equivalent to the fact that the gradient comes
from inside the considered simplex (figure 2.20 (right)).

In the case of a regular grid with isotropic potential, we have b = I, and the
two conditions C,, and C,, coincides — which is coherent with the geometric
interpretation — but it is no longer the case in the more general framework.

However, we have the following property :

Proposition 11.4.1.1
Up to local deformation of the simplex using I11./.16, let us assume that the
potential in x s isotropic.

If the angles of the simplex adjacent to x are acute, then
Cm = C,.

Proof :

Indeed, if the designated angles are acute, then

XXt >o.

Furthermore, let us notice that b=! = (X X+)* = X X*.
Let us assume that
b(U21 — V) Z 0.

Multiplying by =1, we have (us1 — v) > 0.

O

Notice that if the current point x is entirely surrounded by simplices (in
the sense that the union of simplices adjacent to = contains a topological
neighborhood of z), there will be a simplex containing the gradient, and the
(Cm) will be verified. In this case, the previous property asserts that (C,)

will be verified — which will be necessary to the convergence of the scheme.



86 Shortest paths computation

Finally we denote by s*®) the solution on the simplex which verifying the
monotony condition (if it exists). In particular, this solution is superior to
the values of other points of the simplex. If such a solution does not exist,

we set s = “+oQ.

Furthermore, we define Gék) as the function which maps the values on the

vertices of the simplex v’ to s,

11.4.2 Update scheme

The update scheme simply consists in selecting the smallest value produces

by a simplex adjacent to x.

U(z) < min s (11.4.22)

S

As in the previous sections, the points are explored in a non-increasing or-
dering. When a point z is transferred to A, the update step is applied to its
neighbors. It is also possible to compute updates only from simplices contai-

ning = and other points in A.

We denote by 6 = min 6§ the function that maps the set of values of neighbors

of x to the selected update value.

I1.4.3 Convergence proof

Here again, the proof relies on the fact that on the border of C,, conditions,
the computed solution is equal to the solution computed on a sub-simplex —

which will imply the continuity of 6.



I1.4 Anisotropic Fast-Marching, general case 87

We will need the following lemma :

Lemma I1.4.3.1 If a € M,(R) , let us ay) the matriz from which the i
line and i™" column were deleted. If v € M, 1(R), let us denote by vy the
vector from which the i™ element was suppressed.

Let b € M,,(R) be a symmetric positive definite matriz.

Then

v solution de v'bv = 1 with byv = 0

vg) solution de vfﬂ((b_l)[i]) v =1
Proof :

We define w = bv, hence v = b~ w.

By hypothesis we have v'bv = 1 and b;v = 0.
Therefore w'b~*w = 1 and w; = 0, and wf]( Dw
By the way, we have V) = (b~ 1)[ W[, 8O that wry =
1.

((bil)m) topy, and vfy (67 ) "ty =

O

Let us consider again the discretization of Eikonal equation over the S
simplex. (I11.4.10) : (v —u1)*d(v —ul) = 1. Let us consider a solution of this
equation such that it is at the border of Cy, conditions ?, i.e. bj(ul —v) = 0.

From the preceding lemma, we have

(U].[l] — U[”)t((bil)[l])il(ulm — Um) =1

2There is a technical difficulty here — related to positivity condition of A’ : indeed,

A’ > 0 is a necessary condition to the existence of a solution verifying C,,. Therefore, it
seems necessary to analyse the behaviour of the solution in the limit case A’ = 0. However,
as in the case of dimension 2 on a regular grid, we can show that C,, is “stronger” than
A’ >0, i.e. one never has A’ = 0 and C,y,. Indeed, if we assume A’ = 0, Cy, is rewritten
bl < v,1 >, —bv||1]|? > 0. Multiplying with v’, we have < v,1 > —|v||||1]|? > 0, which
is contradictory with A’ = ||1]|2+ < v,1 >Z —|jv||?||1]|7 = 0.
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Yet, b= XTMMXT, hence b= = XM 'M~1X? and

(07D = (X)) MM (X )"

u is then solution of the discretized Eikonal equation on the sub-simplex
obtained from S® by deleting the ™" vertex — this solution being clearly
satisfying C,,.)

Continuity of 6 follows.

We know give the sketch of convergence proof :

monotony Follows immediately from monotony on each simplex, and from

the continuity of 6.
stability The argument is the same as in dimension 2.

consistence In the sequel, we will assume that the simplices of the neighborhood-
system homothetically tends toward a single point. It will be the case
if the considered space is discretized by regular simplices of side h — or
if it is consists of simplices build always in the same way on a regular
grid of side h. It is possible to extend the results presented here : for
example, they remain true for simplices which volume tends toward 0
and such that the corresponding normalised simplices tend toward a
limit simplex. We restricts ourselves to the latter case, in order not to

make the notations too heavy.

Let us consider a function ¢ € C* and x = (z1...2,).

Let us consider a point 2’ = (2, ...2"), and a simplex (z/, 2™ ... z®)
— its associated matrix being h.X.

Let us denote by, = (hX)** My M,y (hX)" and uy = 6, , the solution
computed on this simplex (if it exists) when the values on other vertices
are v, = (p(xM) ... (x™)). Let us consider ¢ € R

! _
up +§ — (') — €=
V=) 1>y, 4+ /I +<vi—p(a),1>]
h—® L2y by, o h—® b
(KN

— _ \12 2
v @)IE T2

he!(11.4.23)

ha!

Furthermore, when h — 0 and 2’ — z, v;, — o(z') =~ hX V. Therefore,
denoting b < XM, M, X", we have
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xt ! xt

||M:vv90|| > 1 HM:EVSOH =1 HMmV(PH <1

F1G. 2.21 — Consistency : different cases

. up — ()
lim 77/
h/lg(l) h
v
< XV, 1>, +/ 1]+ < XV, 1 > —[[XVel[}1]}

113
O (X V) (11.4.24)

A similar analysis as the one conducted in 2D and relying on the conti-
nuity of # = min Hék) shows that

}Lin%)(S(h,x’,go(x’) +Ep+E) = W) has as a continuous limit.
=
The equivalence between the vanishing of this limit and ¢ satisfying

Eikonal equation remains to be checked.

The underlying intuition is illustrated figure 2.21. We will prove that, in
the limit, solutions to the discretized equation exist in a simplex which
contains Vg (after deformation in the anisotropic case). Depending
on how || M.Vl compares to 1, this solution will be strictly inferior,
equal, or strictly superior to ¢(x).

Considering equation (I1.4.24), we observe that for each simplex, if
0 (X V) # +oo then
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0 (X Vi) =0
S< XV, 1>,<0et | XVl = |[M, XTXVp|?> =1 (I11.4.25)

oM (X V) > 0
< | XVl = || M, XTXVe|?* <1 (I1.4.26)

oM (X V) <0
=< XV, 1>,<0et | XV = | M. XTXVe|? >1 (11.4.27)

By the way, X" XV is the projection of Vi onto the linear span of

the simplex.

Several cases have to be considered :

o If |M,Vp| < 1, then for any simplex, | M, X" XVyp| < 1. From
(I1.4.26) we have Qék)(XV@ = +o0 or Hék)(XVgo) > 0. Therefore
lim S > 0.

o If ||M, V| = 1, let us consider the n-dimensional simplex containing
V¢ after deformation — such that Hék) (XVy) # +00. Then we have
ngk) (XV¢) = 0 from (I1.4.25). For other simplices, as in the previous
point, we have Hék)(XVgo) = 400 or Qék) (XV) > 0and then lim S =
0.

o If [ M,Vpl| > 1, we wish to show that there exists a simplex such that
O (X V) # 400, < XV, 1 >,< 0and | X V|2 = || M, XX V]|
1. From (I1.4.27), this would entail lim S < 0.
ngk) (XVy) # +o0o is equivalent to the existence of a solution u of
discretized Eikonal equation in the simplex associated with X, with
values XV on the vertices — C,,, being satisfied.

Let us consider a simplex S which contains V¢ after deformation,
and denote by X, its associated matrix. We define u = ¢(z) it is
clear that u is not solution of the discretized equation on S™. Let

us progressively decrease u. Two scenarios can occur.
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Either we get a u value verifying the discretized Eikonal equation,
at a stage when C,, still holds. The problem is then solved.

— Either one of the C,,, conditions is violated before, which means
that b, (ul—X,Vy) < 0. In the limit, VU belongs to a sub-simplex
Sn=1),

Iterating this process, we travel along a family of decreasing simplices

(S(”), Sr=1) gn=2) )

. We will denote by X; and b; the corresponding matrices. Notice
that < X;Vp,1 >, <0 holds for all these simplices

If a solution v of the discretized Eikonal equation is found a simplex
S such that | M, X;" X;V||?> < 1. Then v verifies v > (), which is
absurd : indeed the value of © when entering the simplex was strictly
smaller than ¢(z).

This processed necessarily lead to a solution — in the worst case in

the S simplex, which concludes the proof.

ordering The argument is the same as in dimension 2.

We thus have the following theorem :

Theorem 11.4.3.2
The distance map computed from the algorithm proposed in I1./.2 converges

toward the viscosity solution of 1.3.15 when the size of the simplices converges
to 0.

If the angles of the simplices have a maximal value #, no obtuse angle can
appear under a deformation by a tensor with anisotropy ratio less than
(tan(6/2))~1. This lead to the following sample results.
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e In dimension 2 :

Theorem 11.4.3.3

In the following cases, the distance map computed from the algorithm propo-

sed in I1.4.2 converges toward the viscosity solution of 1.5.15 when the size

of the simplices converges to 0 :

— Regular grid (figure 2.9), and isotropic potentials (section 11.3) — or ani-
sotropic potentials with principal components collinear with the grid axis
(section 11.5.6.)

8 neighbors system (figure 2.13), potentials with anisotropy ratio less than
(tan(m/8))~1 = ﬁ ~ 2.4.

— Neighborhood system consisting of equilateral triangles, potentials with ani-

sotropy ratio less than (tan(m/6))™" = /3 ~ 1.7.

e In dimension 3 :

Theorem 11.4.3.4

In the following cases, the distance map computed from the algorithm propo-

sed in I1.4.2 converges toward the viscosity solution of 1.5.15 when the size

of the simplices converges to 0 :

— Regular grid and isotropic potentials (section I1.3.5) — or anisotropic poten-
tials with principal components collinear with the grid azis (section 11.5.6.)

— Sysa neighborhood system (cf. section 11.5.2), potentials with anisotropy
ratio less than ~ 1.9.

— Susb neighborhood system (cf. section I1.5.2), potentials with anisotropy
ratio less than (tan(r/6))™" = /3 ~ 1.7

— Neighborhood system consisting of reqular tetrahedron, potentials with ani-
sotropy ratio less than (tan(m/6))™! = /3 ~ 1.7.

I1.5 Numerical Results

11.5.1 Dimension 2

This section presents some results obtained by the algorithm in 2D. If need
be, we applied the algorithm to simplices with obtuse angles — in this case

we selected the smallest solution satisfying both C,, and C,.
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Figure 2.22 shows results obtained with a 4 neighbors system (figure 2.9),
with anisotropic potentials non-collinear with the axis. Such a potential
creates obtuse angles in the deformed simplices, and the distance map does
not seem to converge toward their theoretical value.

Figure 2.23 (top and middle) shows results in the same space, obtained with
a 8 neighbors system (figure 2.13). In this case, the algorithm converges. In
fact as long as the maximal anisotropy ratio is less than (tan(w/8))~! ~ 2.4,
the deformed angles remain acute — whatever the direction of the tensor is.
On the opposite, if anisotropy keeps on increasing (bottom), obtuse angles

appear, and convergence is lost.

F1G. 2.22 — Distance maps, level sets and shortest paths for a uniform aniso-

tropic potential, obtained with a 4 neighbors system. Anisotropy ratio of the
tensor is 2. Top : principal direction is collinear with es, 4. Bottom : principal

direction is collinear with ez /q.
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Fi1G. 2.23  Distance maps, level sets and shortest paths for a uniform ani-
sotropic potential, obtained with a 4 neighbors system. Top : Anisotropy
ratio of the tensor is 2, principal direction is collinear with es.s. Middle :
Anisotropy ratio of the tensor is 2, principal direction is collinear with es; s.
Bottom : Anisotropy ratio of the tensor is 4, principal direction is collinear

Wlth e57r/6-
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11.5.2 Dimension 3

In this section, we present some results obtained by the algorithm in 3D
for different uniform potentials, and different neighborhood systems.(figure
2.24). The first system (Sg) consists in 8 simplices. The second (Sysa) and

third one (S;sb) are bigger, and consists in 48 simplices.

8 simplexes 48 simplexes - a 48 simplexes - b

FiG. 2.24  Different neighborhood systems in dimension 3

The starting set is reduced to a single point. The algorithm is illustrated for

three potentials.

e an isotropic potential (figure 2.25). In the Sg case, the scheme corresponds
to the specific case detailed in section I1.3.5.

e an anisotropic potential, collinear with the axis — speeds in the different
directions being 1,2 and 3 (figure 2.26). In the Sy case, the scheme corres-

ponds to the specific case detailed in section 11.3.6.

In these cases, for all the neighborhood systems, convergence is proved. Ho-
wever, the choice of a bigger neighborhood system increases the precision.
Susa or Sygb give qualitatively equivalent results.

e the same anisotropic potential, but non-collinear with the axis(figure 2.27).
Convergence is lost for Sg. The last figure shows result obtained for S;ga U
Susb — which is not significantly better than the ones obtained for the two

systems independently.
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Fi1G. 2.25 — Results for a uniform isotropic potential. Top : level sets for
Sg, Suza and Sugb. Bottom : mean relative error for the three systems, as a
function of distance from starting point
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F1G. 2.26 — Results for a uniform anisotropic potential, collinear with the

axis. Top : level sets for Sy, Sizsa and Sygb. Bottom : mean relative error for

the three systems, as a function of distance from starting point.
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F1G. 2.27 — Results for a uniform anisotropic potential, non-collinear with
the axis. Top : level sets for Sy, Sysa, Sigb and Syza U Sygb. Bottom : mean
relative error for the three systems, as a function of distance from starting

point.
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I1.6 Other algorithms for shortest paths com-

putation

In the case of dimension 2 with a constant potential (section 1.3.1.1), nu-
merous methods have been developed to compute distance maps. A recent
review of main algorithms can be found in [57]. Notice that in this case, exact
algorithms exists, with quasi-linear complexity in the size of space.

It is also possible to use the idea of approximating continuous shortest paths
by discrete ones in order to compute geodesics on manifolds represented by
random point clouds|201, 136].

In dimension 2, [209] proposed an algorithm similar to Fast-Marching almost
simultaneously. This algorithm was inspired by control theory, and can be
generalised in dimension 3 [87]. Tt is equivalent with Fast-Marching in the
cas of isotropic potentials, but does not converge to the theoretical solution

in more general cases.

Several variants of Fast-Marching have been proposed in order to obtain
convergent scheme in presence of obtuse angles or dually when anisotropy
is important.

In dimension 2, [97] proposed a method to suppress obtuse angles based on
extending the neighborhood. However this extension increase running time,
and its implementation seems to be tricky in bigger dimension. In [190],
the authors propose a more general method, based on an extended front —
the amount of extension depending on the anisotropy ratio. In the case of
parametric manifolds, [197] proposes a fast method for extending the neigh-
borhood.

In dimension 3 — the deformed space being sampled by a regular grid — [31]
proposed a generic splitting algorithm based on integer programming, which
extends the method proposed in [197].

It is also possible to keep the Fast-Marching general sketch, but to allow
updates for points already in A. When the value of such a point is modified, a
recursive correction of its neighboring points is performed [104]. For practical
purposes, the increase of running time again depends on anisotropy ratio.

While the convergence is not guaranteed, the algorithm seems to behave well
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from strongly anisotropic metrics.
Finally, a method was proposed for anisotropic potentials in dimension 3 on
regular grids [161]. It appears to be equivalent with our formulation in this

case.

I1.7 Conclusion, discussion

We proposed a new presentation of Fast-Marching algorithm. We emphasised
on the connexions with Dijkstra algorithm. Our formulation is easily exten-
ded to bigger dimensions, to anisotropic potentials, and to manifolds, and
admits a unified proof.

It would be of high interest to compare and synthesise the algorithms for
shortest paths computations, in the cases when our scheme is not convergent.

To our knowledge, such a work has not been done yet.
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Tubular structures segmentation

using shortest paths

Introduction

In this chapter, we propose an application of shortest paths to the segmenta-
tion of tubular structures — mainly vessels in bi-dimensional medical images.
After an introduction (section III.1), we propose to recast the 2D segmenta-
tion problem as a geodesic computation over a 4-dimensional space in sec-
tion I11.2. An additional scale dimension gives access to the local width of
the vessels, and allows the direct extraction of the centerline of the vessel.
A rotational dimension reduces erroneous detection when two vessels are
overlapping.

In section II1.3, we then propose an application of this framework to a flow-
based vessel segmentation algorithm for optical cortical imaging.

Finally, in section I11.4 we show how to apply this framework to the extraction

of networks of roads or vessels.
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III.1 Tubular structures segmentation 103

III.1 Tubular structures segmentation

In the sequel, we will denote by tubular structures either roads in satellite
images, or blood vessels in medical images (figure 3.1). As we will see, both
share common characteristics, which allow their segmentation in one unified
framework. While our method is originally designed for medical imaging ap-
plications, we will also show some of its results on high-resolution satellite

imaging.

F1G. 3.1  Left : roads in a satellite image. Right : vessels in a medical image

(cortical imaging)

Blood Vessels Extracting tubular structures is a central problem in medi-
cal imaging. Detection of vessels and vessels networks in bi-dimensional me-
dical images is of primary interest to help medical diagnostic. The extraction
of an accurate network allows one to compute meaningful information such
as the local width of the vessels and the connectivity of the networks from a
single planar observation. These problems are critical in retinal imaging|143]
for example, where they allow to diagnose pathologies such as Diabetic Reti-
nopathy [17].

Several problems arise to correctly perform the segmentation task. Many
acquisition modalities produce highly noisy images. Furthermore, vessels
usually exhibit complex tree-like structures that require a careful proces-
sing. Another specific difficulty in 2D imaging is the overlapping of vessels :
two distinct vessels in real anatomy can give rise to a crossing in the plane

of the image (figure 3.2).

Roads
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F1G. 3.2 — A crossing of two blood vessels in a cortical image.

Road segmentation is of primary interest for the automatic analysis of satel-
lite images. Automatic or semi-automatic cartography mainly aims at upda-
ting geographic information systems [194] with applications to road traffic

management or automated navigation systems.

I11.1.1 State of the art

The problem of tubular structure extraction has received considerable atten-
tion in the computer vision and medical imaging communities. The recent
reviews [100] and |14] give extremely good topical outlines of the domain. A
survey on several retinal imaging specific methods can also be found in [126].
Several classes of methods have been proposed to segment tubular structures.
They generally rely on the use of a local detector, post-processed by a method
that links locally detected structures.

Local detectors allow to detect points belonging to tubular structures or
portions of tubular structures depending on the modality of the image. Lo-
cal detectors include various methods : thresholding of images intensities,
ridge or crest detection [8, 164, 34|, wavelets [39, 195, 41, 105], line detec-
tor for low resolution satellite imaging |61, 135|, gabor filters [170], diffe-
rential operators |153, 112|, vesselness measures [63, 53, 114| or matching
filters |71, 36, 82, 18, 35, 115, 159] — recently combined with learning pro-

cesses [72].

Many methods allow to link or post-process the locally detected points.
Among classical methods (inspired by ideas which early arose in computer
vision community for edge detection |33]), thresholding [200], fusion pro-

cesses |93, 76, 130, 218]|, region growing algorithms [58, 180, 220, 80|, front
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propagation 128, 188, 50], or pixel classification [11, 171, 193] techniques were
proposed. Active contours [134, 151, 172], deformable models [142, 133], and
more recently geometric flow based methods [212, 53| can also be used to fit
models of tubular structures or boundaries to the data.

Geodesic based methods are another class of methods allowing the linking of
local features — usually pixels intensities : the notion of shortest path proved
to be efficient for the extraction of salient curves in 2D or 3D images, see for
instance [37]. Geodesic curves can also be used to extract tubular structures
centerlines in 3D medical images, as proposed by [19] and by [177]. In [120],
the authors proposed to extend the shortest path computation to a higher
dimensional domain. They include local radius of the tubular structures as
an additional scale dimension in order to stabilize the computations and to
select the centerline without any post-processing.

Another way of linking local features is the class of tracking methods which
start from a point belonging to a vessel (either user-defined, or detected using
a ad-hoc method with respect to the modality), and iteratively track the
vessel by analyzing the neighborhood of the current point in the direction of
the tubular structures (look-ahead) [152, 111, 179, 67, 121, 224, 206, 45, 199,
24]. Kalman filtering is also used to robustify the tracking process [214, 223].
While some of these methods can handle junctions, they usually fail to deal

robustly with crossings in the case of bi-dimensional medical images.

II1.1.2 Shortest paths methods for road /vessels segmen-

tation

Our work was mainly inspired by shortest paths methods such as |37 and [120].
Starting from an image [ : [0, 1]> — R, the basic idea is to compute road /vessels
as shortest paths in the plane of the image. A potential must be designed
such that computed shortest paths correspond to actual road/vessels in the
images. Since in most medical images, vessels appear to be darker than the
background, a natural idea is to design the potential as a non-decreasing func-
tion of the gray level — doing so, shortest paths are likely to follow dark areas

of the images, i.e. vessels. This is illustrated in fig 3.3. The opposite holds for
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satellite images, in which roads are usually lighter than the background. The-
refore in this case, the potential will be designed as a non-increasing function
of the Gray level. These methods can also be extended to 3D images, and

can thus be used to segment anatomic structures e.g. in endoscopy.

However, as illustrated in figure 3.4, these methods usually fail to find the
centerline of the targeted vessel if the centerline does not correspond to a
minima of gray level along the section of the tubular structure. They are, as
well, unable to directly recover its radius, which evaluation may have signi-
ficance, e.g. in retinal imaging. Several attempts have been made to address
this problem. One of them is to apply a Gaussian blurring to the image as
a pre-processing step, hoping that after this operation, the potential will be
lower at the centerline of vessels. It is however unclear how the intensity of
the blurring should be chosen, and how it affects the obtained segmentation.
It is also possible to refine a first coarse segmentation using skeletization-
like methods as a post-processing [50, 208, 196, 77]|. Notice also that there
exist an important litterature concerning computation of medial axis (e.g.
[192, 28]), but such methods can usually only be applied to binary images.
As we will show, our method will be able to compute centerlines in a more

intrinsic way.

An attempt to intrinsically compute centerlines and radii is proposed in |120)].
The authors propose to lift the 2D image to a 3D space taking into account
radius of vessels. They design a local detector which allows to evaluate the
likelihood of the presence of the centerline of a vessel of radius r at every
point of the image. Then they compute shortest paths in this 3D space, the
potential being a non-increasing function of the likelihood. However, due to
their choice of local detector, their method is extremely sensitive to initiali-
zation and parameters. Their idea of using a radius space was also adapted

in a Dijkstra-like framework [160].

Notice that another algorithm inspired from this framework was proposed
very recently in [16, 17]. After a preprocessing of the image, it uses an aniso-
tropic fast-marching in such a 3D space to accurately segment vessels — while

not handling intersections.
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F1G. 3.3 — Vessel segmentation using shortest paths. Top left : original retinal
image. Top middle : distance map computed from the white point (gray
level was used as potential) and isodistance lines (red). Notice that the front
propagates faster along the vessel. Top right : shortest paths computed from
another point of the vessel. Bottom : synthesis on the distance function

elevation map

I11.1.3 Overview of our method

Our method goes one step further with respect to the method of [120]. It lifts
the 2D image in a 4D radius and orientation space using local detectors of
vessels at different orientations and scales. The use of 4D orientation space

disambiguates crossing configurations [91], and also allows to perform more
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T
~ _’__,.‘-(‘J
20 >\</_/<'2'0
0 0

F1G. 3.4 — Vessel segmentation using shortest paths — while the path is inclu-
ded in the vessel, the centerline is not correctly evaluated. Top left : original
retinal image. Top middle : distance map computed from the white point
(gray level was used as potential) and isodistance lines (red). Top right :
shortest paths computed from another point of the vessel. Bottom : synthe-

sis on the distance function elevation map

stable and accurate segmentation.

Our method is independent from the local detector used, which can be tuned
precisely to the targeted application. It then uses a geodesic based formalism
to compute optimal paths in this 4D space, leading to a robust global seg-
mentation of vessels as detailed in section 111.2. Unlike methods which rely
on a post-processing skeletization to compute the centerlines of the vessels,

our method directly and naturally computes both centerlines and radii of
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vessels.

We propose an application of this framework to the segmentation of vessels in
cortical imaging movies, using the flow information to perform the detection
of vessels (section II1.3).

Finally, in section I11.4, we propose to use this segmentation framework to
design an algorithm for network extraction. Based on a tracking framework
on extended neighborhoods, our algorithm handles difficult crossing configu-

rations.

II1.2 A framework for tubular structure seg-

mentation

In this section, we present our new framework for the segmentation of tubular

structures in a 4D radius and orientation space.

I11.2.1 Local Vessel Model

An image will be treated as a 2D function I : [0, 1]*> — R. The local geometry
of a vessel is captured with a vessel model M (x) € R for z = (21,22) € A =
[—A1, A1] X [=Ag, As]. This model is a 2D pattern that incorporates our prior
knowledge about both the cross section of the vessels and the regularity of
vessel.

The prior on the cross section of the vessel is included by considering models
M (z1,x9) = m(xy) that only depends on a 1D profile m (figure 3.5). The
prior on the regularity of the vessels corresponds to the ratio A;/As of the

horizontal and vertical dimensions of the model.
Model cross-section for vessels. A 1D profile adapted to both cortical
and optical imaging and retinal imaging is defined as

m(x>_{ 1 for |z2] > As/2,
v exp(—ay/(1/2)? — (x2/A2)?) otherwise.

This model encompasses medical knowledge about the light reflexion around

(111.2.1)

blood vessels in cortical imaging. The image intensity inside a vessel is as-
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F1G. 3.5 — Left : intensity profile along a section. Right : a vessel model

sumed to result from a light absorption (with coefficient «) proportional to
the vessel width at this point. It is also widely used in the retina image
community [36].

The value a ~ 0.05 was evaluated from a set of typical cortical images.
However, section 111.2.8.2 shows that our vessel extraction method is robust

with respect to approximate choices of this absorption parameter.

Model for road extraction. A typical road in satellite imaging has a slow
variation of intensity along a section. It is efficiently captured by a binary

model defined as

f As/2,
m(s) < { 0 for |z > A/ (I11.2.2)

1 otherwise.

Regularity selection. The ratio A;/As of the model dimensions acts as a
prior on the regularity of typical vessels. The more typical vessels are curved,
the smaller A;/As should be. Also, robustness to noisy images forces to use
a model with a large enough area A; x Ay. The value of (Ay,As) = (1,2)
is used in our numerical experiments. This choice is further discussed in the

numerical experiments section.

To overcome the inherent difficulties of the 2D detection problem, additional

scale and orientation dimensions are introduced to increase the detectability
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of vessels.

I11.2.2 Rotated and Scaled Models

The normalized pattern M(z) is rotated and scaled to match the varying
orientation and width of vessels. Beside the choice of the pattern cross section
m and the dimension A; X Ay of the model M (z), the scaling of A(r) with r
is another avenue to introduce some prior about vessels in the image. Small
scales cortical and retinal vessels are less regular than large scale vessels. We
thus chose to scale the dimensions of the model A(r) = rA linearly with
the radius . This causes thin vessels to be detected using a finer correlation

analysis.
The warped model M, g(x) for x € A(r,0) = RyA(r) is defined as

Vo € A(r,6), M, g(x) = M(R_g(x/r)) (111.2.3)

where Ry is the planar rotation of angle 6.

Figure 3.6 shows examples of models defined with (II1.2.1) and (II1.2.2) that
are rotated and scaled according to (II1.2.3).

S A S i 5 mpeled u L4
A ma LSy

A e QO SDG
0 0

F1G. 3.6 — Vessel models (left) and roads models (right) for different orien-
tations and scales. Here, A;/As = 1/2 and m(.) is given by (IT1.2.1).
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I11.2.3 Scale/Orientation Lifting

The image [ is lifted in a 4D space by adding a scale and an orientation
dimension. Let €2 be defined by

Q= 00,1)% X [Fmin, Tmax] X% [0,7) (T11.2.4)

the last dimension being periodic. €2 is thus a 4-dimensional manifold.
We call lifting the function F' computed as the normalized cross-correlation 73]
between the image and the local model (I11.2.3)

Yw = (z,7,0) € Q, F(w) = NCCpprgy(Myp(-), I(z +-)) (T11.2.5)

where I(x + -) is the image translated by =, NCC4(f, g) is the normalized

cross-correlation between f and g over the domain A, defined by :

[.(f=DNg—19)

VLU= %/ [alg — 9y

where h = ([, h)/|Al, |A| being the area of A.

This lifting separates real 3D vessels that overlaps when projected at the

NCC4(f,g) = (T11.2.6)

same location by the imaging system but have different orientations.

Timin and 7,4, are respectively set as the minimum and maximum values of
the vessels radius one wishes to detect in the image.

The value F(z,r,0) ranges from —1 to 1 and measures the likelihood of
observing a vessel at a given location x with a width » and an orientation
0. The normalization of the detector makes it invariant under to intensity
variations that occurs in medical images due to the elevation variation of the
vessels and the imperfection of the imaging system. Adding a scale dimension
yields a robust and regularized estimation of the radius and the center of
vessels.

Figure 3.7 shows an example of a cortical image where orientation lifting is

crucial to distinguish locally between orientations.

Numerical computations. A medical image is acquired on a on discrete
grid of n x n pixels. The 4D lifting is computed for n, radii evenly spaced

N ["min, Tmax] and ny orientations evenly spaced in [0, 7), with n, = 12 and
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0

Fi1G. 3.7 — left : An original 2D image. right : Its 4D lifting (fixed radius),
ranging from -1 (black) to 1 (white). White values indicate likely positions

and orientations of vessels.

ng = 12 in the experiments. This requires O((ryaxn)*n’n,ny) operations with
Tmax << 1 and n,,nyg < n.

111.2.4 Lifted Potential

The 4D lifting (I11.2.5) defines an isotropic potential p over the 4D domain
Q

f

Vw € Q, pw) = max(l — F(w),e). (I11.2.7)

The parameter e prevents the potential to vanish and is set to € = 1072 in
the numerical tests.

This potential encodes local information about the presence of a vessel at a
given position, scale and orientation.

Notice that this choice is somewhat arbitrary. Any non-increasing function

of F' could be considered.

I11.2.5 Distance Map and Geodesic Computation

The length of a lifted curve v : [0, 1] — Q over the lifted domain is defined
as

Lrly) / P (ENIIY () dt. (ITL.2.8)
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where the length of the speed vector v = 7/(t) = (v, v, vg) is
[o]* = 02 4+ M2 + v, (I11.2.9)

(A, ;1) being normalizing constants that controls the penalty on scale and
orientation variations along the vessels in the images. In practice, as we
will demonstrate in the numerical experiments section, we observed strong
robustness with respect to the choice of (A, p).

Given a set A C Q of seeds points and a set B C () of ending points, a
shortest lifted curve v*(¢) C € joining A to B is defined as a shortest path

for the metric L

(A, B) = argmin Lp(7), (I11.2.10)
YEC(A,B)

where C(A, B) is the set of curves 7 such that v(0) € B and (1) € A. The
corresponding geodesic distance is dp(A, B) = Lp(y*). This definition can
be specialized to a single starting point A4 = {wy} and/or to single ending

point B = {w;} to define the geodesic distance between points and/or sets,
e.g. dp(wo,w1) = dp({wo}, {wi}).

Therefore, we are in exactly in the framework of shortest paths on a Rieman-
nian manifold introduced in section 1.3.1.6.

The tensor associated with the potential is proportional to

1000
0100
00 A O
000 p

i.e. its principal components are aligned with the canonical basis of the space.
Furthermore, up to the periodicity of the # dimension, we can assume that
Q is a cuboid of R*.

Q) is discretized as a grid of N = n’n,ng, where extra links are set bet-
ween points (i, 7,7,0) and (¢, 5,7, (ng — 1);—9) and therefore we can apply the
framework developed in section I1.3.6 to compute shortest paths.

A first order Euler-scheme was used to perform the gradient descent — the-

refore computing v* with sub-pixel accuracy.
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I111.2.6 Shortest Paths and 4D curves

A 4D curve c(z,z’) between two points z, 2z’ € [0,1]? is computed as a 4D
geodesic in  between the 4D lifted sets A(z) and A(2’) defined as

A0y {(x«)’ P 0)\ 7 € [Fans a0 € [0 W)} . (I11.2.11)
The 4D curve is then defined as
Cowr = 7 (A(z), A(Z)). (T11.2.12)

This 4D curve contains three components ¢, (t) = (Z(t),7(t),6(t)). The
path Z(t) C [0,1]? is the actual centerline over the image plane, whereas 7(t)

and 0(t) give the local width and orientation of the vessel, see Figure 3.8.

F1G. 3.8  Left : centerline extraction of a vessel in a cortical image. Starting
point : white square. Ending point : black square. Right : corresponding

orientation 6(t) and radius r(t).

I11.2.7 Another interpretation

Due to the structure of the targeted images, we observed that the direction

of a shortest path projected in the image plane is approximately equal to the
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current angular position # of a curve. Up to a renormalization, vy is then the
curvature of the projection of + in the image plane.

The length of a lifted curve is written

Lp(y) = /0 p('y(t))\/vg + 2 + puadt (I11.2.13)

and then its minimization leads to curves with both small length and curva-

ture — which is somewhat similar to an optimization in a Sobolev space.

111.2.8 Evaluation of the Geodesic Centerlines

In this section, we present some results obtained by our method.

I11.2.8.1 Accuracy and robustness to noise and parameters choice

The accuracy of the centerline extraction is compared on synthetic data to

the two other methods mentioned in the introduction :

e the method of [39, 38], in which a 2D metric is computed from an image
intensity blurred with a Gaussian filter. The filtering helps to re-center the
geodesic since the smoothed image exhibits a local maxima around the
center of the vessels, at the cost of a loss of spatial resolution,

e the method of [120], in which a 3D (space-scale) metric is computed. All
the parameters of this 3D model are optimized to give the best results.

In the experiments, our method was used with an absorption parameter oo =

0.1, which is not optimized to fit the a of all benchmark images.

The precisions of the three algorithms are tested on several phantoms images.
This phantoms images are build from five centerlines and radii analytical
forms — thus with sub-pixelic accuracy. The cross section corresponds to the
model (II1.2.1) with parameter o = 0.01, @ = 0.1 and a = 1. An additive
Gaussian white noise with various amplitudes are added to the phantoms.
Ten phantoms are generated for each condition, and each noise level. This
leads to a total database of about 3000 images. Figure 3.9 shows some of the
obtained phantoms.

For each experiment, the true starting and ending points of each phantom

are used, as well as the true starting and ending radii for the [120] method.
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Default parameters A;/Ay = 0.5, ng = 12, n, = 12, p =1 and \ =

[ rmac—rmin were used for our algorithm. Tts sensibility with respect to this

" ! i.

F1G. 3.9 — Some of the phantoms used in our benchmark (basic intensities

Ntheta

choice will be discussed.

range from 0 to 1), shown here with a spatially independent Gaussian noise

of variance 0.15.

The extracted 4D curve c(t) = (Z(t),r(t),0(t)) is compared to the ground

trust ¢* using the following errors :

E *(t)])*de
{ rrore(c)? = [y [|#(8) — 2 ()] (I11.2.14)

ErrorR fo [r(t) —r* t*)] dt

where t* is such that 7*(¢) is the ground truth centerline point closest to
Z(t), and where r is the radius computed by the method (proposed method
and [120] only), and 7* the ground truth radius.

Figures 3.10,3.11,3.12,3.13 and 3.14 shows Errorg(c) and Errorg(c) curves
for several synthetic images as a function of the noise level.

Using the 3D space-+scale lifting |[120] produces results of varying quality,
and requires a careful tuning of the parameters to achieve the optimal error
rate. [39, 38] with an optimal smoothing generally provides a precise eva-
luation of the centerline locations, but without any evaluation of the local
radius. Notice also that the smoothing parameter achieving the best result
varies from one phantom to another. Our method provides both positions and
radii with more robustness and accuracy and outperforms other existing
methods, even when the model is not precisely tuned.

Furthemore, figure 3.15 shows an experiment where start and end points have

been shifted two pixels to the right. Due to the slow variation of intensity
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along the section of the benchmark, the 2D method is sensitive to this shift,
while the 4D method recenters the paths, and does not suffer harshly from
the shift.

Robustness to 2—; Figure 3.16 shows the influence of the choice of ﬁ—; on
the results. 2—; = 0 corresponds to a model reduced to a segment. The choice

of low values of 2—; allows to evaluate radius with a good accuracy when noise
level is low, but leads to some instability. On the opposite, a too important

value choice leads to precision lost. ﬁ—; = 0.5 is a good compromise.

Robustness to discretization Figure 3.17 demonstrates the effect of the
choice ng  i.e. the number of angles used in the discretization. It appears
that for low ng, the quality of the segmentation depends on whether or not
the angle of the vessel is approximately present in the discretization of [0, 7).
We thus performed quality tests for 31 rotations of the benchmarks (of angles
{i/10};=1.31). Low values of ny lead to a higher variability in the segmenta-
tion, depending on whether or not the vessel direction is aligned with one of
the discretized 6 value. Overall the algorithm is quite robust to the choice of
this quantity.

A similar experiment was run for n, (figure 3.18). Although the centerline
detection is robust to choices of small n,, the radius evaluation is extremely

sensitive to it.

Robustness to speed parameters We performed experiments to asses
the dependence of the algorithm with respect to the choice of the angular
speed u (figure 3.19) and radius speed A (figure 3.20). Centerline segmen-
tation shows little sensitivity with respect to the choice of speed parameter
in angular direction — radius estimation is slightly affected is the speed is
to low. The choice of speed parameter in radius direction seems to be more
important : a too important value will lead to good results for radius estima-
tion when noise level is low, but will show a more unstable behavior when

the noise increases. A = (.57 mez=rmin seems to be a good choice.
T

In all the subsequent sections, the results were obtained with parameters
A /Ay = 0.5, ng =12, n, = 12 (i = 1 and 70, = 6.5), A = O.SW



1.2 A framework for tubular structure segmentation 119

and p = O.lnle. The choice of a low 1 is motivated by the necessity of having a
space () “wide enough” in angular direction in order to disambiguate crossing

configurations.

I11.2.8.2 Evaluation on Synthetic Crossings

The 4D lifting (II1.2.5) is challenged by testing the extraction of a curved
vessel with a self crossing. Figure 3.21 shows that the vessel curve is not
correctly extracted with a metric that does not take into account the local
orientation. A 2D purely spatial metric or a 3D space-+scale metric extracts
a curve that does not capture the correct topology of the vessel. Our 4D
centerline position-+scale+orientation favors the extraction of a longer curve

that is both well centered and geometrically faithful to the true vessel.

I11.2.8.3 Evaluation on Medical/Satellite Images

Figure 3.22, left, shows vessels extraction for a complex optical imaging of
the cortex with several branches and intersections. The centerlines computed
from different ending points are overlapping.

Figure 3.22, right, shows vessels extraction on a retinal image from the
DRIVE database |198, 143|. The starting point is shown with a white square
and several end points are shown with black squares. The crossings in this
retinal image show the interest of the 4D lifting, that allows to correctly
detect the geometry of the vessels.

Figure 3.23 shows a similar experiment in a satellite image.

In figure 3.24, two initial seeds were provided, on the roads going down and
to the right from the crossing. Shortest paths were then computed from the
two others segments of roads. The crossing is handled correctly, which can
not be done by the other methods which do not use an orientation lifting.
Figure 3.8 shows the estimated radius r(¢) and orientation () for a vessel
extracted in a cortical image. Both the centerline position, the radius and
the orientation are computed with sub-pixel accuracy.

The precision of our 4D lifting method is evaluated on the DRIVE data-
base [198, 143|. Approximate ground truth centerlines positions and radii

are computed from the binary masks available with the database. Figure
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3.25, shows the binary segmented vessels together with the ground trust cen-
terline position and boundaries (top and middle), as well as the result of our
segmentation algorithm (bottom).

The three geodesic extraction algorithms are applied to these three images
between the indicated starting and ending points. Table III.1 report the cen-
terlines position and radii errors Errorg(vy) and Errorg(y) for each method.
For the centerline extraction, due to the lack of precision of the ground truth,
there is no significant difference between the proposed 4D lifting method and
the space only geodesic extraction with smoothing of the metric. The 3D
space-+scale lifting [120] method showed unstable behavior with respect to
its initialization and parameters, which had to be chosen carefully - for the
second image, we did not manage to find parameters giving a correct result.
Our 4D lifting method is also more precise for the radii estimation than the
3D lifting.

DRIVE 1 DRIVE 2 DRIVE 3
Errore | Errorg | Exrrore | Errory | Errore | Errorg
2D metric | 0.40 - 0.38 - 0.30 -

3D metric | 1.33 1.67 3.13 3.31 0.53 1.90
4D metric | 0.31 0.43 0.35 0.44 0.40 0.47

TAB. III.1 — Centerlines positions Errorg and radii Errorgy estimation errors

on retina images for the three different methods.

I111.2.9 Conclusion and Discussion

We proposed a reliable algorithm to segment tubular structure in bi-dimensional
images, between user provided points. Experiments on real and synthetic data
show the accuracy and the robustness of the proposed methods.

Furthermore, as it is widely independant of the local detector we used, it is
virtually applicable to other modalities. As an example, it could be interesting
to consider less naive roads detectors than the simple one that was used in

our work.
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Questions remains about the choice of the metric and of the potential func-
tion. Although we did not notice high sensibility with respect to the choice
of any reasonnable potential in our experiments, it would be interesting to
understant how design it in order to reach an optimal segmentation for the
targeted application. Metric choice could also be used for example to favor
faster rotations for smaller vessels. Tuning it would require a careful statis-
tical analysis of a database of manually segmented tubular structures.

Theoretically, this framework could be extended to tri-dimensional images,
but the lifting would lead to a 6 or 8 dimensional space — depending if the
section of a vessel is modelised by a circle (1 parameter) or an ellipse (3
parameters) — which is likely to be computationally untractable. Moreover,
as there is no need of orientation disambiguation in tri-dimensional images,
it is not clear that this algorithm would lead to improvments with respect to
existing methods. However, as explained in V.2, several tracks may be fol-
lowed in order to reduce computational complexity in that case, for example

computations on a partial volume or approximation of the update step.
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F1G. 3.10 — Centerlines positions and radii estimation errors for the phantom
1 of Figure 3.9.

Top, middle and bottom row respectively show results for phantoms genera-
ted with parameters a = 0.01, « = 0.1 and o = 1.

Left column : error Errorc () (in pixel) for the three methods, as a function
of the noise level (1000 where o is the independent Gaussian noise variance).
(red : 4D metric (space+scale+orientation), green : 3D metric (space-+scale)
[120], blue : 2D metric with different pre-smoothing [39, 38])

Right Column : Radii error Errorg(7y) (in pixel) for the 3D and 4D methods,

as a function of the noise level.
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FiG. 3.11  Centerlines positions and radii estimation errors for the phantom
2 of Figure 3.9. See 3.10 for legend.
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F1G. 3.12  Centerlines positions and radii estimation errors for the phantom
3 of Figure 3.9.See 3.10 for legend.
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F1G. 3.13  Centerlines positions and radii estimation errors for the phantom
4 of Figure 3.9.See 3.10 for legend.



126 Tubular structures segmentation using shortest paths

2 : T y r 2
—4D —4D
—2D ______,_._..__\______N...__—-"——""‘_"' 3D
—2D+ 15
1.5 2D+ 3 {1 1.5}
3D
1t 1
/\_'
0.5} 1 o.sJ |
0 . : . . 0 . : . .
(i} 20 40 60 80 0 20 40 60 80
2 2
—4D —4D
—=2D 3D
—2D+ 15
1.5 2D+ 3 {1 1.5}
3D =

! | /\

0 . : . . 0 . : . .
(i} 20 40 60 80 0 20 40 60 80
2 : . . . 2

—4D —4D

—=2D 3D

—2D+l15 /\
1.5 2D+ 3 A=A 15F

3D /\\__,_/

0.5-_/_//_/—/\/- 0.5M

0 20 40 60 80 0 20 40 80 80

F1G. 3.14  Centerlines positions and radii estimation errors for the phantom
5 of Figure 3.9.See 3.10 for legend.
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F1G. 3.15 — Centerlines positions and radii estimation errors for the phantom
2 of Figure 3.9 with a = 0.01, with start and end points shifted two pixels
on the right. Compare results with 3.11 (top left)
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FiGg. 3.16 — Influence of the choice of j\\—; : experiments for benchmark 1.
Different curves are for several values of ﬁ—; (dark blue — cyan — red). Top
Left : mean centerline errors. Bottom Left : standard deviation of centerline
errors. Top Right : mean radius errors. Bottom Right : standard deviation of

radius errors.
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F1G. 3.17 — Influence of the choice of discretization step in angular direction.

Results for phantoms 1 (Top row) and 5 (Bottom row) with noise 0.4. z-azis :

number of angles of the discretization. Left : centerline errors, bars represent

standard deviation. Right : radius errors, bars represent standard deviation.
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F1G. 3.18 — Influence of the choice of discretization step in radius direction.
Results for benchmark 1 (Top row) and 4 (Bottom row) with noise 0.4. z-
axis : number of radius of the discretization. Left : centerline errors, bars
represent standard deviation. Right : radius errors, bars represent standard

deviation.
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FiGg. 3.19 Influence of the choice of speed in angular direction. Results for
benchmark 1 (Top row) and 5 (Bottom row) as a function of noise level. Left :

centerline errors. Right : radius errors.
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F1G. 3.20 — Influence of the choice of speed in radius direction. Results for
benchmark 1 (Top row) and 4 (Bottom row) as a function if noise level. Left :

centerline errors. Right : radius errors.

2D metric |39, 38] 3D metric [120] our method : 4D metric

(position) (position-+scale) (position-+scale+orientation)

F1G. 3.21 — Comparison of the 2D [39, 38|, 3D [120] and 4D lifting (our

method) when encountering a self-crossing.
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F1G. 3.22 — Centerlines positions and radii extraction of vessels in a cortical

image (left), and in a retinal image (right).

F1G. 3.23 — Centerlines positions and radii extraction of roads in a satellite

image.
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F1G. 3.24 — Centerlines and radii extraction of roads for the three tested
methods. Two starting points (white squares/circles) and two ending points
(black squares/circles) were provided for each method. From top to bottom :
2D, 3D, 4D methods.

FiG. 3.25 - Binary segmented images from the DRIVE database, together
with the extracted ground trust. middle : corresponding images with ground-
truth centerline and boundary and initial and ending points. bottom : cen-

terlines positions and boundaries computed with our method.
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II1.3 Application to flow-based extraction

In this section, we present an application of our shortest paths vessels seg-

mentation algorithm to the analysis of cortical optical imaging.

I11.3.1 Introduction

Magnetic Resonance Imaging (MRI) is a widely used medical imaging moda-
lity, discovered in the1970’s [11, 129]. Tt allows the tri-dimensional imaging
of several tissues with good contrast and high spatial definition, while being
non-invasive. Its basic principle is to put a subject in a high intensity magne-
tic field, therefore aligning the protons in water molecules with the field. A
second field is then applied briefly, changing the alignment of protons. When
relaxing to the alignment induced by the first magnetic field, the protons emit
a signal in radio frequency, which can be detected. The use of non-constant
magnetic fields allows one to locate the spatial position from which the signal
was emitted. Furthermore, the intensity of this signal is related to properties
of the tissues from which it originates. This leads to a tri-dimensional image
of an organ, usually discretized in voxels whose resolution can be under 1mm3

(figure 3.26).

F1G. 3.26 — A sagittal slice of my head, acquired with MRI.

Functional Magnetic Resonance Imaging (fMRI) [109, 1416] is a variant of
MRI for the imaging of neural activity. When neurons in an area of brain
activate, one can observe a subsequent increase in blood flow in the area,
aiming at providing glucose and oxygen to the neurons. This phenomenon is

called Hemodynamic Response. fMRI is able to detect this response, through
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the detection of changes in oxyhemoglobin concentration, and can thus issue
an activation map of brain. Due to its high spatial precision, fMRI has become
in a few years one of the most widely used technique for functional imaging
of the brain.

However, fMRI does not directly measure the neural electric activity, but
the hemodynamic response. There is therefore a strong need for relating
hemodynamic response to neural activity [32, 48|.

Moving red blood cells (RBCs) can be directly "seen" by optical imaging
of the cortex at adequate wavelengths [26], allowing to quantify blood flow
in vascular networks |75|. However, to achieve a robust, fast and reliable
determination of the small, eventually activity-evoked changes in cerebral
blood flow (CBF), some obstacles still have to be overcome [211].

In particular, vessels segmentation is a highly time-consuming task if relying
on user input, but is a challenge for standard automatic methods due to the
weakness of contrast of small vessels and ambiguities posed by crossing and
branching points.

Here, we present a new algorithmic approach based on our shortest path
algorithm, allowing to segment vessels by using flow information rather than

anatomical information.

I11.3.2 Pre-processing
I11.3.2.1 Sequence Registration

Images were acquired at 200Hz with a CCD, upon illumination at 570nm,
from the primary visual cortex of an awake macaque who had a lem? trans-
parent cranial window chronically implanted above the area of interest. Even
though, during the experiment, the monkey’s head is thoroughly stabilized,
the curvature of the cortical surface, its position with respect to the camera
and the exact morphology of the vasculature change slightly under the ef-
fects of the heart-beat and the monkey’s body movements. These movements
can be as large as a few pixels, and can be relatively fast (until hundred of
Hz). An inter-frame spatial matching step is therefore required to be able to
further process each image-sequence. |225| offers a recent survey of several

image such image registration methods.
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F1G. 3.27 —  Left : Blue : SIFT points on a part of the first frame of the se-
quence. Red : corresponding Delaunay triangulation. Right : Registration between
two frames : a point belonging to a triangle in the first image is registered to the
point with same barycentric coordinates in the corresponding triangle of the second

image.Scale-bar is 500um in all figures

We used a ad-hoc features-based method for registering a complete sequence,
based on Scale-Invariant Feature Transform (SIFT) descriptors [122]. SIFT is
a state-of-the-art fast and robust algorithm for extracting and characterizing
salient features from an image which can deal with several computer vision
problems. For each image, the SIFT algorithm yields a number (controlled by
a threshold) of 2D points p with sub-pixel precision, along with a descriptor
vector v, in R'® for each point p, which represents the image around the
detected point. The main feature of the SIFT detector is that the points
and descriptors obtained are invariant with respect to scale, rotation, and
illumination changes.

Our method can be described by the following steps :

1. Features Detection : the SIF'T algorithm is applied to each image of the
sequence, to detect characteristic points along with their descriptors
(figure 3.27) after images have been smoothed with a narrow Gaussian

filter (~ 2 pixels) to remove high spatial frequency components.

2. Features Matching : we use one frame (usually the first, 0) as a reference
and match its SIFT keypoints to those of other frames. Using some
threshold §, we keep from the set of these keypoints only those py
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2<6)in

every other frame 7. Notice that no spatial information is used during

which match with one and only one keypoint p; (||vp,, vp;

this step : only the points’ descriptors are used during the matching
process, not their positions. This potentially allows for large movements

between frames.

3. Full Image Matching : the third step is intended to extend the matching
of the characteristic points to the whole space. For this purpose, we first
apply Delaunay triangulation [25] to form a mesh M, which vertices are
the STF'T points of the reference frame (figure 3.27). Then each triangle
(Poas Pobs Poc) of this mesh is matched to its counterpart (piq, Pip, Pic) in

each other image 7 using an affine transformation (figure 3.27).

However naive, this method seems to be fast and to be well suited for the

registration of almost unchanging (up to a rigid transform) images.

I11.3.2.2 Beer-Lambert correction

The Beer-Lambert law predicts the measured signals as a function of the
absorption of the illumination light by the tissues. If we separate the ab-
sorption by the RBCs from the one from vessels or other cortical tissues, we

a2do=f2d" wwhere T is the reflected light intensity, I, the incident

get [ ~ [pe™
light, o the absorption coefficient of vessel, d the width of the vessel at the
considered point, 3 the absorption coefficient of the RBCs and d’ its width.

Thus the signal of interest - e.g. the presence of RBCs can be extracted by

applying the following filter to each point of the sequence : d' —log(lbise)
where Iy, = Ioe™*%¢
For each point [, is evaluated as a robust minimal intensity throughout
the registered sequence. Such a normalization using the minimal intensity
instead of average intensity [211] enhances the signal from RBCs motion in

the vessels without increasing the noise outside.

I11.3.3 Flow-based vessels extraction

Blood-flow based image segmentation To adapt the shortest path for-

malism to a flow-based extraction of vessels, we replace the light-intensity
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F1G. 3.28 — Extraction of the space — time image. Left : neighborhood of p in the

direction 6. Right : corresponding space — time image.

(gray level) information by a value depending on the presence — or absence —
of blood-flow. For a point p and an orientation #, we determine whether flow
following the direction 6 is present at p throughout the sequence. To achieve
this, we first extract a 2-dimensional space — time image from a small neigh-
borhood of p in our sequence of frames in direction @ (figure 3.28), yielding
an image /(l,t). Using the same structure tensor formalism as in [211], we

compute the following tensor :

oI oI\ (oI OI\"

As noted in [211], this orientation of this tensor can be used to locally eva-
luate the inclination of stripes in the image, and therefore the speed of flow.
Furthermore, the ratio between its two eigenvalues (i.e. its anisotropy) gives
an indicator of the presence of flow in that direction — the more the tensor
is anisotropic, the more likely there is significant flow.

Let T(;E, ) be the mean of this tensor over the time sequence. We propose to
use the ratio p(z,#) between the two eigenvalues of T'(x,0) as an indication
of the presence of flow at point x in direction 6.

Let 2 be defined by

Q0,1 X [Famin, Tmax] X [0, 7) (I11.3.1)

We propose the following approach inspired by the work presented in section

IT1.2.3 to segment, vessels based on flow information as shortest paths.
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Assuming that the anisotropy of the tensors is constant across the section of

a vessel, we propose the following model for anisotropy, for a vessel of width
AQ .

o1t As/2,
m(zs) ‘*:f-{ or || > As/ (111.3.2)

0 otherwise.

This assumes that the anisotropy is constant inside and outside a vessel, and
that it is more important inside. Notice that this rough assumption should
be further investigated. We then define a set of scaled and rotated models as

defined in (I11.2.3).
Then, we denote by F' the following quantity :

Yo = (2,7,0) € Q, F(w) = NCCypgy(Myg(-), T(x +-,0))

A potential is thus defined over the 4D domain as

VweQ, p(w) = max(l — F(w),e). (I11.3.3)

Vessels as then extracted as shortest paths for this potential, as explained in
I11.2.5.

Figure 3.29 shows some results of vessels extracted by this method, super-
imposed on the first image of the sequence. Note how the smoothness in
orientation imposed by our method allows the extraction of the vessel, even
when crossings are cluttering the image. Also, in the left image, the segmen-
ted vessels has a very bad contrast with respect to the background, but is
still segmented, which shows the interest of using a flow based segmentation

for this modality.

111.3.4 Results

111.3.4.1 Frame registrations : rigid vs. non-rigid

Figure 3.30 compares the performance of our STF'T-based registration method
with a classical rigid registration algorithm. Notice our method correctly

registers the borders of the vessels.
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FiG. 3.29 Automatically extracted vessels. Initial and final points are
shown with squares. Notice that only flow information (vs anatomic infor-

mation) was used to perform these segmentations.

I11.3.4.2 Average flow in the vasculature

Figure 3.31 shows RBCs’ speeds in three automatically segmented vessels.
RBCs were found to cross any given section of the vessel one-by-one. Also,
linear RBC density along the vessels’axis was found to be essentially equal
for all three vessels (D ~ Dy ~ D3 ~ 6.7 = 1.18 mm™!). The RBC current
conservation equation Vi D1 4+ Vo Dy + V3 D3 = 0 is therefore satisfied within
the variability of the data (where V; are the RBCs’ speeds in the vessels, and
D; the density of RBCs).

I11.3.4.3 Variations of the flow in time

Estimation of velocity changes of the RBCs flow inside the vessels is much
sensible to the accuracy of frame registration and vessel extraction. We per-
formed such estimations on a trial of our monkey experiment presenting a
high level of vibrations. Figure 3.32 shows that in the rigid registration case,
the data remains too much polluted by signals originating from outside the
vessel and no flow estimation is possible; whereas the SIFT registration al-
lows to deal with these vibrations most of the time (except when they are

faster than frame acquisition rate, resulting in blurred raw images).
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Fi1G. 3.30 — Top : ratio between frame 0 and frame 300 of a representative
sequence, on an area of interest. From left to right : raw (no registration),
rigid registration, SIFT-based registration (clipping range - i.e. gray-level
intensity scale - is the same for the 3 images), STFT-based registration with
a clipping range ten times smaller. Bottom : || ||2 comparison of each frame in
the whole sequence to frame 0 (for the area of interest). Raw, rigid registration
and SIFT-based registration are respectively represented in green, blue and

red. Left : whole sequence. Right : zoom on frames 250 to 350
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Fic. 3.31  RBCs’ speeds in three automatically segmented vessels

I11.3.5 Conclusion and Discussion

Using the non-rigid image registration described here, we were able to achieve
far better spatial matching between the vasculature in different frames. As a
result, the blood flow signal could be recovered in vessels that did not yield
any signal upon rigid registration. The obtained RBC flow could also be
validated for conservation in vascular branching points, the total number of
RBCs flowing in and out being found to match. The described data processing
will hopefully allow increasing the accuracy and the sensitivity of optical
imaging-based blood flow measurements, in particular with respect to reliably
mapping over large vascular networks the small activity dependent blood
flow changes elicited by neuronal activation. However, in view of the great
difficulty of cortical imaging acquisition, we had only one sequence at our
disposal in order to assess the quality of our methods. Validation on other
data set should thus be needed.
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F1G. 3.32  Comparison of the estimations of RBCs velocity changes after ri-
gid vs non-rigid sequence registration. (F) Vessel considered, extracted using
flow-based segmentation. (A,B) Space-time data extracted along this vessel
after rigid and non-rigid registrations respectively. (C,D) Corresponding es-
timates of RBCs velocity, using the tensor structure information : only in the
non-rigid case it is possible to estimate the velocity and then detect heart-
pulsation changes. (E) Estimation in the non-rigid case, when averaging the
structure tensor over the whole section of the vessel : only little information

is added compared to using only the middle line of the vessel (D)
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II1.4 Application to Network of Curves Extrac-

tion

I11.4.1 Introduction

In section II1.2, we presented a framework for the extraction of vessels or
roads between two user-defined points. It is however interesting for many
medical applications to automatically extract full networks of vessels. In this
section, we propose an extension of this work to extract full networks of
vessels.

The proposed algorithm consists in an iterative growing of the network. At
each step of the algorithm, a set of key points and junction points is added to
seed new geodesic branches that are connected to the current network. The
length 7 of these branches is fixed and defines the granularity of the network.
Notice that [15] recently proposed a similar growing-of-minimal-paths fra-
mework, but it is specialized in the segmentation of closed curves in 2D and

meshing of surfaces in 3D.

111.4.2 Extension Domain

Given a network A = A® obtained after i steps of the algorithm, the growing
process computes an extended network A®+Y by adding new geodesics that
have an Euclidean length 7 > 0. This ensures that the branches of A1) have
equal length so that its distribution is uniform, avoiding clusters of geodesic
curves.

As in section A.2.1, the Euclidean geodesic distance U5"(wp) from wy to A

is the Euclidean length of the geodesic v* = (A, wp) joining wy to A

UK (wo) = /0 1 (v*)'(¢)||dt.

The extension domain is defined as

E(A, ) = 0B (A, 1) N B(A,0) (I11.4.1)

with notations :
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BE¢(A,r) = {we Q\ U (w) <r}
OB (A, r) = {w e Q\ U (w) =7}
B(A,r)={we Q\Us(w) <7}
OB(A,r) ={w e Q\ Us(w) =71}

It is composed of points w € ) that can be reached from A by geodesics of

(111.4.2)

Euclidean length 7. We also want these points to be meaningful according to
their geodesic distance to A, which requires that Us(w) < 7o. This imposes
that for any point on E(A, 1), Ua(w) /UK (w) < o, e.g. the average value of
p along the geodesic curve joining w to A is better than . The threshold o
thus guarantees that the extension domain does not extend in areas where
no vessel is present. ¢ must be selected according to the average response p
of the vessel detector for the targeted application.

Figure 3.33 shows a typical extension domain around a single vessel.

Numerical computation. The computation of U5 is described in ap-
pendix A.

In order to save time, the propagation for the computation of both U%"¢ and
U 4 is performed only on the grid points w that satisfy Uy (w) < 70.

Figure 3.33 shows the level sets of the geodesic distance, computed inside the
region where U (w) < 7o. E(A,7) is the intersection of the Euclidean ball
border (light) and the geodesic ball (gray).

111.4.3 Network Extension

A set IC(A) of locally optimal key points are seeded on the extension domain
E(A, 7). Theses points are the extremities of the new geodesic branches added

to the current network A.

Key points selection. A key point w € K(A) is a local minimum of the
geodesic distance, as measured using a neighborhood of size ¢ in the spatial
domain. A point w = (z,r,0) € E(A, ) is a local minimum of the geodesic

distance if

Vo = (2,70) €&, |v—% <6 = Ulz) <Ux(T). (I11.4.3)
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F1G. 3.33 — left : retinal image. Projection of the starting set A is indicated
by a white square. middle : 2D schematic representation of the distance
from A, restricted to B(A, 7o) (for each 2D point =, min,gUUa(x,r,0) is
represented). Corresponding level-sets are shown. A 2D representation of
OB¥“(A, 1) is superimposed, and key points are indicated by white squares.

right : key points connexions to A.

The set of key points is

K(A) = loc.argmin Uy (w), (I11.4.4)
weE(A,T)

Extraction of local minimum of geodesic saliency is sensitive to noisy data
sets, in particular in flat areas where no vessel is present. The size § of the
spatial neighborhood should be adapted to the noise level of the image. 0 is
set to 4 pixels in the numerical experiments.
Figure 3.34 shows a key point detected on the boundary of the extension
domain in a synthetic example. Figure 3.33 shows that several key points are

detected on a medical image near a branching of vessels.

Key points connexion. An augmented network is obtained by linking
each w € KC(A) to the current network A. The geodesic v*(w,.A) linking w
to A is computed and is added to the existing network. These paths are
likely to be vessels segments starting from the initial set 4. This requires no
additional computation since U, (w) is readily available inside B(A, 7o), and
v (w, A) C B(A, T0).

We denote the union of these paths by :
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FiG. 3.34 — Schematic display of the extension domain extension domain
E(A, 7) where a single key point w € K(A) is detected.

KA = [J 7w A (IIL.4.5)

weK(A)

111.4.4 Network Junctions

In the case when A consists of several starting points, the procedure described
in the previous section may not be sufficient to extract a complex network.
Linking different part of the network is required in some cases (figure 3.35).
Also, noisy images generate a network whose topology might progressively
diverge from the true network, and correcting this requires to join several
parts of it. This is achieved by computing a set of junction points J(A) C
B(A, 70)NB" (A, 7) and linking these points to the network with geodesics.

Junction points selection. The geodesic distance U4 is singular at a
points w that are connected by two geodesics to two different networks points
wi,wy € A. These two points are necessarily at equal geodesic distances
dp(w,w1) = dp(w,ws) = Uy(w). To ensure that these two points belong to
different parts of the network that should be joined, we impose that they
are far away according to the topology of A, as measured by their distance
D a(wq,wsq) defined as the Euclidean length of the shortest path from w; to
wy in A. Also, like in the case of extension domain, we require that the
points are meaningful from the point of view of underlying vessels, e.g. that
Ua(wr) UK (wr) and Ug(ws) /UK (w2) are less than o.
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We denote as w € Jy(A) the set of singular points whose closest network
points (wy,ws) satisfy D g(wy,ws) > 1, Ua(wr) /UK (w1) < o and Uy (ws) UK (we) <
0. nis set to 10 pixels in the numerical experiments.

Similarly to key points (II1.4.4), junctions points are local minimum of the

geodesic distance, but are restricted to be singular points

J(A) = loc.argmin S4(w) (111.4.6)
wejo(.A)

where (II1.4.3) defines a local minimum. Figure 3.35 shows an example of

junction points where two parts of A are aligned along the same vessel.

we J(A)

F1G. 3.35  Junction point w € J(A).

Junction connexion. FEach junction point w € J(A) is linked to the net-
work A by extracting the two geodesics 77 and 5 linking w to its two closest
points wi,ws € A. Numerically, the set [y is determined during the Fast
Marching propagation as points where the fronts emanating from different
base points in A are collapsing. A careful initialization of the gradient descent
around the point w is needed because the distance function Uy is singular
at this location. In order to compute the geodesic to w;, we perform a gra-
dient descent by using a numerical approximation of the gradient that only
depends on values at points belonging to the front emanating from w;. The
same holds for w, . Two proper gradients are therefore computed that define
the two descent directions for «; and ;.

We denote the union of these paths by :
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JA) = [ 9w A)Usw, A (111.4.7)
weJ(A)

I11.4.5 Vessels Cropping

Using geodesics that emanate from both key points and junctions points, a
refined network AU*Y is obtained that extend the initial network A4 = A®

A = 4O YK(AD) U J(AD) (I11.4.8)

Since the extremities of this refined network lie at a fixed distance 7 from A,
the network might extend slightly beyond the boundaries of vessels. The final
extended network A@*Y is obtained from A“*+Y using a cropping process that
remove part of the network that are unlikely to belong to vessels.

For each curve {7*(t)}{_, emanating from a key point in the refined network
AW "a cropped curve is computed as {v*(t)}ic,,, where ¢, is the minimum
t satisfying F(y*(t)) < o. The final network A(+Y is obtained from AG+Y

by cropping all the geodesic curves.

I11.4.6 Overview of the Algorithm

Starting from an initial set A of (either isolated or not) seed points, the
network is progressively grown by inserting new key points and junction
points. In practice, a set {1, ..., 2k} of spatial locations are provided either
by the user or in an automatic way depending on the modality, and A©®) =
{A(xy)} . This leads to the following steps :

1. Initialization : the initial points are A© set i < 0.

2. Computing the extension domain : compute S(.A(i),’i') as explained in
Section T11.4.2.

3. Seeding key points : compute the set of key points (A®) as explained
in Section 111.4.3.

4. Seeding junction points : compute the set of key points J(A®) as
explained in Section I11.4.4.

5. Network extension : compute the extended network AC*Y defined in

(IT1.4.8) by connecting seeded point.



I11.4 Application to Network of Curves Extraction 151

6. Network pruning : compute ACTD from AG+D) as explained in Section
1I1.4.5.

7. Stop :if AGHD £ AW get 4 — i+ 1 and go back to 2.

Multi-pass refinement. The algorithm presented in the previous section
uses a fixed 7, and might thus fail to detect vessel extremities. Indeed, if the
vessel extremity is located far from £(A®, 1), it might not be part of a geo-
desic starting from the key points IC(A®). To address this issue, a refinement
pass is added if A1) = A® which lower the value of 7. In the numerical ex-
periments, we have used a set of values 7 = {Tax, Tmax/2; Tmax/4}. Reducing

the value of 7 does not require to re-compute U4 and U

I11.4.7 Numerical Experiments

Experiments were carried out on both synthetic and medical images. For
all the presented results, we used discretization n,, = 12 and ny = 12 for
radius and orientation dimensions. The speed on the orientation dimension
what set to pu = O.lnlg, and the speed on the radius dimension what set to
A= 0.5%. Otherwise indicated, the values o = 0.25 and 7,4, = 48
where used for synthetic examples, and ¢ = 0.33 and 7,,,, = 36 for medical
examples where the quality of vessel is less good on average.

Phantom experiment of figure 3.36 (top) shows the behavior of our method
in case of junctions. All the junctions are handled correctly by the algorithm.
Phantom experiment of figure 3.36 (bottom) shows the behavior of our me-
thod in case of a (self-)crossing. The correct segmentation of the vessel is
retrieved by the algorithm. All the examples where computed from a single
user-provided seed point.

Figures 3.37, 3.38 and 3.39 show results on medical images. For figures 3.37,
3.38, the only required human-interaction is to set the initial points, e.g. to
point out the relevant structure to segment in the image. For figure 3.38,
initial points were computed automatically as local minima of p. Notice that
depending on the image modality, the initial point could be computed auto-

matically (e.g. detection of optical papilla on retinal images).
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F1G. 3.36 — top : Multiple junctions example on synthetic data, after full
running of the proposed method (7,4, = 96) White square : user provided
initial seed. Black squares : key points. Black circles : junction points. bot-
tom : Crossing examples on synthetic data, after full running of the proposed

method. White square : user provided initial seed.

111.4.8 Conclusion and discussion

The networks of curves extraction algorithm proposes a framework which na-
turally extend the geodesic method by defining the network extension notion.

This method was tested on several synthetic and medical examples, and for
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Fia. 3.37 — Experiments of the network extraction algorithm on cortical
images. White square : user-defined initial seed. Notice the correct handling

of intersections and forks.

Fia. 3.38 — Experiments of the network extraction algorithm on retinal
images. Two initial points were provided (white squares). Intersections and

forks are correctly handled.

different kinds of initial conditions.

Some problems remain, and their precise analysis could lead to improvments

in our algorithm.

e The overall speed of the algorithm could be improved. One could consider

implementing speed-up versions of Fast-Marching. Furthermore, as Fast-
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FiGg. 3.39 — Experiments of the network extraction algorithm on retinal
images. Initial seeds (white squares) were computed automatically as local
minima of p over an extended 15 pixels neighborhood. Junction between
different parts of the network are correctly handled. Notice that an incorrect

seed (bottom), did not give birth to any local network.

Marching starts from the full current network at each step, many compu-
tations are performed several times one could thus consider freezing like
strategies, or partially reuse already computed distances map in some way.

e The algorithm does not make an actual difference between crossings and
junctions — which are just disriminated by the angle of incidence of the
vessel(s). The speed parameter on angular direction acts as a selection
parameter for an admissible junction angle. Two vessels crossing with a
small angle will lead to a false segmentation. It seems difficult to overcome
this limitation without the help of a post-processing step.

e In our implementation, the parameters 7 and o were set globally by hand,
and will decide wether or not an intersection is crossed or not. It would
be interesting to be able to learn those parameters, or to make them be
(locally) adaptable to characteristics of the image.

e Extremities of vessels are sometimes miss-handled (cf figure 3.39). This is
due to the fact that parameter 7 cannot be decreased too much without
having incertainty in the speed along the shortest path. Again, a post-

processing could handle this case.



Chapitre 1V

HARDI-tracking using shortest
paths

Introduction

In this chapter, we propose an application of shortest paths formalism to the
problem of fiber tracking in High Angular Resolution Diffusion Imaging.

Diffusion Magnetic Resonnance Imaging (DMRI) [11] is derived from MRI
(cf. section IIL1.3.1), but allows to evaluate the probability distribution of
water molecules in any direction at any point of a tissue. Its main application
is to produce an image of white water fiber bundles in the human brain : due
to organization and physico-chimical properties of the neurons axones, water
molecules tend to diffuse faster along such bundles. Using DMRI imaging,
one can then assess the presence of a white matter fiber at a given point of
the brain, in a given direction. White matter fibers bundles are known to
convey neural information between different part of the brain, and studying
their anatomy helps to improve the knowledge of neuroscientists with respect
to the connexion of different parts of the brain, and to its way of operating.
Many new diffusion models and fiber tracking algorithms have recently ap-
peared in the literature always seeking better brain connectivity assessment,
in particular regarding complex fiber configuration such as crossing, bran-
ching or kissing fibers. Clinical applications are also asking for robust trac-

tography methods, as they are the unique n vivo tool to study the integrity
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of brain connectivity.

The most commonly used model is the diffusion tensor (DTT) [12], in which
diffusion is measured in the three principal directions (figure 4.1, left). This
modality is only able to characterize one fiber compartment per voxel, and
is not adapted to areas of fibers crossings.

Several alternatives have been proposed to overcome this limitation of DTI,
mainly using high angular resolution diffusion imaging (HARDI) [210]. Seve-
ral competing HARDI reconstruction technique exist in the literature, which
all have their advantages and disadvantages. Nonetheless, the community
seems to now agree that a sharp orientation distribution function (ODF),
often called fiber ODF or fiber orientation density function (fODF) [36, 207,
90, 51|, able to discriminate low angle crossing fibers needs to be used for

fiber tractography (figure 4.1, right).
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F1G. 4.1 - DTI of a human brain (left) and fODF (right) on the same coronal
slice. Fibers of the Corpus Callosum (CC) and of the Corticospinal Tract can

be seen in the plane of the image, as well as a section of Cingulum (Cing).

Three classes of algorithms exist to compute fibers or evaluate connectivities
between different part of the brain from the volumic data : deterministic,
probabilistic and geodesic. A large number of tractography algorithms have
been developed for DTI, which are limited in regions of fiber crossings. While
HARDI-based extensions of streamline deterministic |210, 107, 20, 215, 51|
and probabilistic [147, 154, 191, 14, 178, 221, 51| tracking algorlthms have
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flourished in the last few years, there has not been, to our knowledge, any
proposition to generalize DTT geodesic tracking [163, 88] for HARDI measu-
rements.

In this chapter, we develop an algorithm for brain connectivity assessment
using geodesics in HARDI. We propose to recast the problem of finding
connectivity maps in the white matter to the calculation of shortest paths
on a Riemannian manifold. This Riemannian manifold is a cross-product
between white matter volume and a unit sphere representing the possible
direction of fibers. The potential will be defined from fiber ODFs computed
from HARDI measurements.

Anisotropy will be used in order to constraint the paths to follow a direction
in the white matter which is coherent with the position on path on the unit
sphere. Notice that in chapter III, this was unnecessary, due to the structure
of the vessels : with our model, it is very unlikely for example to find shortest

paths perpendicular to vessels.
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Publication related to this work
This chapter is based on the work published in [165].

IV.1 Method

Firstly, let us recall some basics definitions about Riemannian manifolds —

these definitions were already introduced in section 1.3.
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Let (V, g) be a Riemannian manifold i.e.

e I/ is a k-dimensional manifold

e for all x € V, g(z) is a bilinear symmetric positive definite application on
def

T,V inducing a metric ||y|l. = v/g(z)(y,y) over that manifold.
The length of a smooth curve v : [0,1] — V is then defined as

o)™ [ Olhod® [ VAOTROR @ (VL)

Given a set A C V of seeds points and a set B C V of ending points, a

geodesic v*(t) C V joining A to B is defined as a curve with minimal length
between A and B :

(A, B) = argmin £(7), (IV.1.2)
YEC(A,B)

where C(A, B) is the set of curves v such that 4(0) € A and (1) € B. The
corresponding geodesic distance is d(A, B) = L(7*(A, B)).
Following A, let us also define the Fuclidean length of the curve ~

Conely) / (8t (IV.13)

and X
L) [ IV OBt (V1.4

If we interpret the metric induced by ¢ as as the inverse of a “speed” tensor
over V', for any smooth curve v, L£(7)/Leuc(y) can be thought of as the
average of inverse speed along the curve, while

\/ﬁsq )/ Lewe(y) — (L(7)/Leuc(7y))? represents the standard deviation of this
quantity.

Connectivity measures. Considering A and B two subset of V' we then
define

)

) o EOAB) e 4B max (7 (A B ()

'Ceuc(’y* (-’4’ B)) ’ t€0..1]

Ly(v*(A B)) _( L(v*(A, B)) )2
Lewe(V*(A,B))  \ Leue(7*(A, B))

@
el

C,(A,B) =
(IV.1.5)
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7*(A, B) being a geodesic between A and B, C(A, B), C,(A, B) and C,,4. (A, B)
are respectively measures of average inverse speed, inverse speed standard de-
viation, and worst inverse speed to reach B from A. They can therefore be

interpreted as three different connectivity measures between A and B (see
A).

IV.1.1 HARDI Riemannian manifold

We now explain how we recast the fibers bundles tracking problem from
HARDI data to the calculation of connectivity maps on a Riemannian ma-
nifold.

let us denote by £ C R? the white matter volume, S the unit sphere and
VEExS. Using such a 5-dimensional space can disambiguate crossing
configurations since in such a space (z,vy, z,eg,,) and (z,y, z, ey ) are com-
pletely different points. The idea was introduced [91], but the authors pro-
posed to segment rather than track bundles using level-sets.

At every point (z,y,2) € E, we can compute the fODF f,,. : ep, € S —
fayz(€0,) € RT.The full data can thus be naturally modelled as a mapping
ffrom V to RY : f:(2,y,2,e00) €V = fry00 = fuyz(€0,,) € RT.

Let us define the metric g at any point (z,y, z,eg,,) of V as

E S

7 7\ N /-/\

P(f:ryz930) 0 0 : 0 0
g de. 0 P(fuyz0,) 0 : 0 O _ P(fayz00)I3 0
weve 0 0 p(foyss) 0 O 0 al,

0 0 0 a0

|
0 0 0 0«

where p is an increasing function from R to R*™* and « is a parameter
controlling the speed on the angular space § with respect to the speed on
the E volume. Such a metric “favors” paths going through areas of high
diffusion (figure 4.2).

Recasting the problem in the white matter volume, let us consider two
points (x1,41,21) and (x9,ys2,29) € E between which we wish to estimate
the connectivity. Let us denote A = {z1,y1, 21,60, | €9, € S} and B =
{22,y2, 22,604 | €9, € S} C E X S.

)
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.E!

0=m/2

Fi1G. 4.2 — [llustration of the proposed potential in 2D. Starting from a 2D —
(0 — RT) dataset (top), we interpret it as a (2D x ) — RT mapping. Slices
for 6 = 0 (bottom left) and 0 = 7 /2 (bottom right) are represented. Potential
is lower on the # = 0 slice. Paths (in blue and red) are computed on this
(2D x ) space, and then reprojected in 2D. Notice however that the blue
path is not consistant as it was computed in the 8 = 0 slice while having a

= m/2 direction.

C(A,B), C,(A, B) and C,4.(A, B) are then natural measures of connectivity
between (z1,y1, 21) and (x2, Yo, 22). Furthermore, let us denote by 7 : ExS —
E the projection such that 7(z,y, 2, €p,,) = (2, v, ). To the geodesic v*(A, B)
in F x S then corresponds a projected path w(v*(A,B)) in E C R3. Since
v*(A, B) follows a high diffusion trajectory, w(v*(A, B)) is likely to follow an
actual fiber bundle in the volume. With this point of view, a can be seen as
a smoothing parameter of the angular variations of the fibers.

However, among the paths v : [0,1] — V, we would like to favor the ones
such that at every point 7(y) follows the corresponding ey, direction : if

Y(to) = (20, Yo, 20, €89, ). We would like to have

(m(7)2(t0), 7(7)y (t0), m(7):(t0)) =

(IV.1.6)
£egy.00] | (T (V) (t0), T (7)y (t0), 7(7) = (t0)) ]
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The blue curve in figure 4.2 shows a path which is not satisfying this constraint,
but as the same length as the red path.

In order to encourage these paths and thus to penalize paths which are trans-
versal to fibers, we propose the following approach : let us consider a point
(x,y, 2, ep,). Instead of using an isotropic metric p(fy:0,)/3 in the first three
directions, one would like to favor propagation along the ey, direction. In
order to do so, p(fyy-0,)I3 is replaced by the following matrix :

p(fmyz&p) 0 0
(R97<P)T 0 min(ea p(fa:yz@go)) 0 RG,@
0 0 min(e, P(fxystO))

where Ry, is a rotation which maps the first axis to the ey, direction, and
€ is some constant. As long as p(f.y.0,) > €, this tensor favors propagation
in the ey, direction. However if p(fyy.0,) < € (i.e. if the diffusion is small
at this point), this does not make sense, and we keep the isotropic tensor
defined by p(fuy.0,)15. Figure 4.3 illustrate this : in the § = 0 slice, where
potential is low, we encourage propagation in the § = 0 direction. The red

curve will then be shorter than the blue one.

- -
_— ==
-_— |
9:.0 - - 9.:7r/2 °
-_— = = o [ L
- o [ [ o

Fi1G. 4.3 Tllustration of the proposed corrected potential in 2D.

The choice of this metric is a natural way of handling the 5-dimensional
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HARDI data and to obtain connectivity maps and fibers. It ensures that (i)
the full HARDI angular information is used, (ii) geodesics go through areas
of high diffusion, (iii) geodesics travel in those areas in the correct directions

and (iv) crossing configurations are disambiguated.

Notice also that the analysis conducted in II1.2.7 apply to this framework :

the choice of the metric described above favors curves with low curvature.

IV.2 Implementation

For our problem, E was discretized as a subset of a 3-dimensional grid, at
the HARDI measurement spatial definition — notice that due to the non-
rectangular shape of E, we use the method desribed in appendix A.1 to
prevent the front to be computed outside F, e.g. to propagate outside the
white matter volume. § was meshed in such a way that every vertex of the
mesh corresponds to a direction of HARDI measurements — leading to a 6
neighbors system. Furthermore, in order to achieve good precision, we chose
to use a 26-neighborhood in the discretization of E.

However, computing distance map using Fast-Marching algorithm is this fra-
mework is unreallistic. Recall that the update state is of exponential com-
plexity in the dimension of the space. In the proposed framework, every point
of the discretization has 156 neighbors, and is surrounded by thousands of
simplices.

Since we are mainly interested in precision in the high diffusion directions, we
propose to compute d(A,{z}) at each point by using Dijkstra local update
step for the 156 neighbors. The Fast-Marching local update step is then only
applied for the simplices S, of Sysa (see section I1.5.2) in the 3 first dimensions
which contain +ey, direction, and their sub-simplices (see figure 4.4, second
scheme). Furthermore, we perform this computation only if the diffusion is
important enough (i.e. p(fzy.0,) > €) at current point. We also chose to
update from a simplice only if the computed values satisfies monoticity and

upwinding conditions described in [1.4. The update step is thus the following.

Ulx) « min{rrl(ir)l{s§l)}, Sq} (IV.2.1)
s¢

J
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€6,0

F1G. 4.4 — Illustration of the simplices used in the update step, in 2D, with
a 8-neighbors system. All the 1-dimensional simplices are used, while for
simplices of bigger dimension, only the ones containing ey, direction are

used.

Figure 4.5 shows an application of this strategy to a uniform anisotropic

potential in dimension 2.

FiG. 4.5 — Results of the mixed Dijkstra-FastMarching algorithm for a uni-
form anisotropic potential in dimension 2, using the neighborhood system
described in 2.9.

This leads to tracktable computations, while the precision in the fibers direc-
tion is preserved. This choice will be further discussed in the experimental

results section.
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IV.3 Experimental results

IV.3.1 Real HARDI data

The HARDI dataset was acquired on a whole-body 3 Tesla Magnetom Trio
scanner (Siemens, Erlangen) equipped with an 8-channel head array coil [].
The spin-echo EPI sequence, TE = 100 ms, TR = 12 s, 128 x 128 image
matrix, FOV = 220 x 220 mm?, consists of 60 evenly distributed diffusion
encoding gradients with a b-value of 1000 s/mm? and 7 images without any
diffusion weightings. The measurement of 72 slices with 1.7mm thickness (no
gap), which covered the whole brain, was repeated three times, resulting in
an acquisition time of about 45 minutes. The SNR in the white matter of this
Sy image was estimated to be approximately 37. Additionally, fat saturation
was employed, 6/8 partial Fourier imaging, Hanning window filtering and
parallel GRAPPA imaging with a reduction factor of 2.

From these HARDI measurements, the fiber ODF was reconstructed. As
mentioned in the introduction, several fiber ODF reconstruction algorithm
exist [386, 207, 90, 51|. Here, we used the analytical spherical deconvolution
transform of the g-ball ODF using spherical harmonics [51]. We used an
order 4 estimation with symmetric deconvolution fiber kernel estimated from
the real data, resulting in a profile with FA = 0.7 and [355, 355, 1390] x
10~ %mm?/s.

The geodesic tracking is performed within a white matter mask was obtained
from a minimum fractional anisotropy (FA) value of 0.1 and a maximum ADC
value of 0.0015. These values were optimized to produce agreement with the
white matter mask from the T1 anatomy. The mask was morphologically

checked for holes in regions of low anisotropy due to crossing fibers.

IV.3.2 Geodesic connectivity results

For each bundle except the Superior Longitudinal Fasciculus (SLF), expe-
riments were carried out with p(f) = In(f)/in(2), ¢ = 1 and o = 2 after
thresholding values of the fODF under 1 to avoid negative values the choice
of a logarithmic function for p was driven by both the need to compact the

highly variable values of the fODF (many other methods perform a linear
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voxelwise rescale  which is not suitable for our purpose), and the need to
avoid strong anisotropy that will lead to violations of the upwinding condi-
tions (I1.4.17). Our method however demonstrates robustness with respect
to the exact choice of these parameters.

Since SLF has high curvature, we set angular speed o = 8 in order to fa-
vor tracking of actual SLF rather than projections on the occipital cortex.
Runtime was about 75min for each bundle. It can be further reduced by com-
puting only some of the connectivity maps, or by computing them only on
a subset of white matter. While results presented below show connectivity
maps on the full maps, experiments show that the bundles can be retrie-
ved by stopping the algorithm when 20% of the mask has been visited. The
runtime is then reduced to about 12min.

Figure 4.6 shows connectivity measures and some geodesics obtained from
different seeds manually placed into major fibers bundles, which agree with
our knowledge of the white matter anatomy. Notice the correctness of the
maps on Corticospinal Tract (CST) , which does not spread into the Corpus
Callosum (CC). Also, the Cingulum (Cg), which is a thin structure close
to CC is correctly handled by our method. This clearly shows the advan-
tage of using a 5D space : since fibers in Cg and CC are perpendicular,
these two bundles are very distant in our 5D space, while they are extre-
mely close in 3D. Other fibers bundles are also correctly retrieved, such as
the Inferior Fronto-Occipital Fasciculus (IFO) and the Anterior Thalamic
Radiations (ATR). Furthermore, coherent results are obtained by the three
proposed connectivity measures.

On figure 4.7 isosurfaces of the connectivity maps are shown for all the pre-
vious fibers bundles, and for the corresponding fibers in the right hemisphere.
Notice that the lower part of SLF is missed in the right hemisphere.

Figure 4.8 shows some geodesics in the left hemisphere.

Figure 4.9 shows results on Corpus Callosum (CC). Several experiments were
ran from manually provided seeds. Notice that CC is not segmented by our
method. Rather, fibers include spenium on the posterior part of CC
are tracked from each given seed. Cingulum is also represented. While this
anatomical structure is very close to CC in 3D space, it is not in our 5D

segmentation space, and thus it is correctly not retrieved by our method.
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CST

Cg

IFO

ATR

FiGg. 4.6 — Geodesic tracking results on five major fibers bundles in left
hemisphere. From left to right, C, Cpaz, Csigme and FA.
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F1G. 4.7 — Geodesic tracking results on major fibers bundles — left and right
hemispheres. [sosurfaces of the connectivity measures are shown. Each bundle
in a different color. In yellow, the CST (C); in blue, the Cg (C); in red, the
IFO (Cinaz) ; in orange, the SLF (Cpaz) ; in green, the ATR (C). Bottom Row :

some corresponding geodesics.

F1aG. 4.8 — Geodesics corresponding to major fibers bundles in left hemisphere.
In yellow, the CST; in blue, the Cg; in red, the IFO; in orange, the SLF ; in
green, the ATR.
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F1G. 4.9 — Geodesic tracking results on Corpus Callosum (CC). Seeds are

indicated in red. Cingulum in left hemisphere is also represented (Red)

IV.3.3 Comparison with existing methods

In this section, we compare our results with results obtained by other methods
on the same data :

e The GCM algorithm of [163, 118] (figures 4.10 and 4.11). Tensors were
evaluated from the raw data using the framework developped in [117].
Connectivity measures corresponding to our C and C, were computed as
indicated in [163, 118]. We furthermore computed the C,,4, connectivity
measure.

e The deterministic HARDI tracking algorithm described in [52] (figure4.12).

While GCM are faster than our method, the obtained C' and C,,,, results
are less focussed on the bundles of fibers, and are subject to “leaks” in other
bundles (Cg, SLF, and link to the opposite hemisphere through CC for CST).
Moreover, shallow bundles not aligned with the grid seem to be missed by
the method (e.g. Cg, lower part of CST)
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On all experiments, Cl;gm, is sensitive to the grid orientation, and gives
results of varying quality (figure 4.10).

The deterministic tracking approach (figure 4.12) gives generally satisfying
results, but is also subjet to leaks (leak in opposite hemisphere for ATR, leak
in CC from Cg). Due to its high curvature and its ambiguity, SLF is also not
tracked correctly.

Overall, while these two methods are faster, our method seems to perform in

a comparable or better way on the selected tracks.

IV.3.4 Approximation quality

In this section, we discuss the choice of (IV.2.1) as an approximation of more
complete Fast-Marching update steps. We computed connectivity maps using
4 different update schemes : (1) pure Dijkstra algorithm, (2) (IV.2.1) scheme,
(3) : (2) + Fast-Marching update state applied to the neighboring simplices
in the three first directions (4) Fast-Marching update state applied to all
simplexes in the three first directions. Figure 4.13 synthesizes those schemes.
Isosurfaces of connectivity maps are shown figure 4.14, for the 4 schemes,
and the same connectivity value. While pure Dijkstra algorithm produces
different results, the other methods provided qualitatively equivalent results.

This plaid for the use of scheme (2), which is the fastest among those three.

IV.4 Conclusion and Discussion

We presented a geodesic based tracking algorithm on HARDI data. Our
method rapidly estimates connectivity maps inside a white matter mask from
seed points, without the need for an explicit computation of fibers. All the
directions of HARDI measurments are used by our method. Our experiments
plaid for the use of a 5D space and show that our method is able to recover
complex fiber bundles, which are often difficult to track.

However, our experiments are preliminar. A full validation of the method
would imply a systematic study on a inter-subject large database, as well as
a the study of the dependancy of the method with respect to its parameters,

including the choice of p.
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CST

Cg

IFO

ATR

FiGg. 4.10 - GCM results on five major fibers bundles in left hemisphere.
From left to right, C, C4z, Csigma and FA.
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Fiag. 4.11 — GCM results on major fibers bundles in the left hemispheres.
Isosurfaces of the connectivity measures are shown. Each bundle in a different
color. In yellow, the CST (C); in blue, the Cg (C); in red, the IFO (Cpnaz);
in orange, the SLF (C,4,); in green, the ATR (C).
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F1G. 4.12 — Deterministic tracking results on five major fibers bundles. From
top to bottom and from left to right : ATR, Cg, IFO, ATR, SLF
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€6,p €6, €6,p €0,p

F1G. 4.13  Illustration of the simplices used in the different update schemes
in 2D, with a 8-neighbors system. From left to right : (1), (2), (3) and (4).

3

NN NTY
RGPSy U

F1G. 4.14 — Tsosurfaces of C for Cingulum (top), and Cyq, for IFO (bottom).
From left to right, schemes (1), (2), (3) and (4) were used.
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Conclusion générale

Le travail de thése dont il est rendu compte dans ce manuscrit a porté sur
I’application de méthodes de calcul de plus courts chemins & différentes pro-
blématiques tirées du domaine de I'imagerie médicale : segmentation de vais-
seaux et de réseaux de vaisseaux pour différentes modalités, et calculs de
cartes de distances dans la matiére blanche a partir de données d’IRM de
diffusion a haute résolution angulaire.

D’un point de vue théorique, sa contribution principale est une présentation
unifiée de différentes versions des Fast-Marching — donnant une vision géomé-
trique de l'algorithme, et permettant d’effectuer une preuve de convergence
relativement simple dans le cas le plus général. Le chapitre correspondant
se veut également une tentative de clarification par rapport a des références
considérées comme classiques, mais qui contiennent néanmoins nombre d’im-
précisions. Le cceur de cette thése porte sur des applications de ces algo-
rithmes.

Du point de vue applicatif, une idée centrale du travail présenté est celle
de se placer dans des espaces ou l'orientation des structures anatomiques
considérées est représentée explicitement. Ceci est évidemment naturel et
important dans le cadre de calculs de cartes de connectivités au sein de la
matiére blanche, les données que nous avons a disposition rendant essen-
tiellement compte de l'orientation des faisceaux de fibres. Mais nous avons
également montré I'intérét d’introduire ce genre de méthodes dans le cadre
de segmentation d’images bidimensionnelles, pour lesquelles il n’y a aucune
information a priori concernant I'orientation des structures a segmenter.
Dans le cadre d’images bidimensionnelles, nous avons proposé un formalisme
permettant de segmenter de facon robuste des structures tubulaires, tout en

évaluant leur rayon. Les applications a différentes modalités, et en particu-

175
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N

lier 'extension proposée a la segmentation a partir de flot optique suggeére
que notre méthode pourrait trouver d’autres applications dans le cadre de
I'imagerie médicale. Le travail concernant la segmentation automatique de ré-
seaux ouvre également des perspectives vers la création de nouveaux systémes
automatiques ou semi-automatiques de traitement d’images médicales. I.’op-
timisation du temps de calcul n’a pas été une préoccupation centrale de notre
travail. Son amélioration pourrait permettre I'inclusion de nos méthodes dans
des interfaces de type livewire.

Concernant les applications au calcul de cartes de connectivité dans la ma-
tiere blanche, I'algorithme que nous avons proposé s’il n’a pas encore été
testé sur des jeux de données complet — offre des premiers résultats inté-
ressants : en un temps faible comparé a celui de 'acquisition des données,
il permet d’obtenir des cartes de connectivité correspondant a nos connais-
sances anatomique, y compris pour des faisceaux fins et/ou proches d’autres
faisceaux, tels le Cingulum. Etant donné la dimension de I’espace considéré
pour cette méthode, notre parti pris a été de sacrifier la précision — en par-
ticulier, notre schéma ne converge pas vers une solution théorique — afin de
diminuer le temps de calcul. Nous avons cependant veillé a conserver la pré-
cision dans les directions principales des fibres. Une étude plus approfondie
de ce que nous perdons par rapport aux Fast-Marching complets serait inté-
ressante. Il serait également judicieux de valider cette méthode sur une étude

a plusieurs sujets, et de la comparer a d’autres méthodes existantes.



Annexe A

Appendix to shortest paths

computation

Let us consider the framework described in 11.4.

A.1 Shortest paths computation on a subset of
R" or V

Fast-Marching can be easily adapted to the computation of shortest paths
on a subset © of R™ or of the considered manifold V' (section 1.3.1.2).

A first solution is to put the points of the discretization outside € in A at
the beginning of the algorithm with +o0o0 value — or to simply remove them
from the discretization. Therefore, those points will not be update, nor they
will participate in updates of their neighbors.

However, in view of performing a gradient descent to compute geodesics, it
is desirable to dispose of the value of U at any point immediately outside
2 — which will allow a unified evaluation of the gradient in 2. One possible
solution is to label such points, and to set their initial value to +o00. These
points we behave as 2 points during the execution of the algorithm, with the
exception that they will not be used to update their neighbors values. An
evaluation of U will thus be available for those points, without perturbing

the values obtained for points in 2.
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X

X1
X2

Fig. 1.1  Approximation of the shortest path in the simplex used during
the update step.

A.2 Connectivity measures

A.2.1 Definitions, computations

If we interpret the local metric as the inverse of a speed tensor (section
1.3.1.6), we saw that a shortest path can be considered as shortest in a tem-
poral sense. The average potential of the shortest path between two points
can then be interpreted as a connectivity measure between these two points
in several contexts (chapter II). The standard deviation of speed, as long as
its minimal value along the path can also be meaningfull for the connectivity
assesment between two points (chapter I11.)

In order to estimate those quantities, we propose to use a generalization of
the process described in [163]. Let us consider an update step in a simplex of
matrix X. Condition C,, implies that M 2V U comes from inside the simplex
(figure 1.1).

Inside the simplex, we can approximate the shortest path to x with the line
going through z of direction M ~2VU. Let us denote by y the intersection of
this line and the facet opposed to x in the simplex.

Furthermore, we write y = >_"" | A\;z; in barycentric coordinates '.

!The equation of the opposite facet of the simplex is given by > e;t; = 1, where

e @ XT1. We immediately deduce the coordinates of point y. A is then expressed as

Xty
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For any point z, let us denote by Uey.(z) the estimated Euclidean length
along the shortest path from x to the origin. We will use the following ap-

proximation :

n

UEUC(:E) ~ Z /\iUeuc(xi) + ||5E — y” (A21)

i=1
Average potential along a geodesic is then given by C = U/U,ye.
Similarly, we can estimate the square of the potential, averaged along a geo-

desic (Uy,) and the maximal potential (or the minimal speed) along a geodesic
(Umax)-

. y
)~ S AUg(w) + 2~y ||” y”g (A2.2)
Uas() 2 {2}, =201 (A.23)

Cinaz = Unmaez can be seen directly as a connectivity measure.

The standard deviation of potential along a geodesic C, = \/Usq/Ueuc — (U/Ueuc)2

measures the “regularity” of the trajectory between two points.

A.2.2 Numerical results

We will not give any convergence results for the calculation of C, C,,.. et
C,. We present results obtained for these measures for two different potential

maps in dimension 2. A 4 neighbors system is used in all the experiments.

A.2.2.1 “Vessels” Potential

The first tested potential mimics a vessel (cf. section II1.1). It is equal to 1
in all the space except in a shallow vessel in which its value is 1/4  which
favors front propagation (figure 1.2, left).

Figure 1.3 presents the obtained results. The three connectivity measures are
minimal inside the vessel.

Figure 1.4 shows similar results for a noisy potential. Gaussian noise was

added in the lower left part, and the vessels was cut in its right part (figure
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Fi1G. 1.2 Potentials used for testing connectivity measures. Noise free (left)

and noisy (right).

4

Fi1G. 1.3 — Connectivity measures for “vessel” potential. Top, from left to
right : U, Ueye and Ugy. Bottom, from left to right : the extremal intensity

values being given, C (0.2, 1), C, (0, 0.4), Cpaz (0.2, 1).
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F1G. 1.4 — Connectivity measures for noisy “vessel” potential. Top, from left
to right : U, Ueye and Us,. Bottom, from left to right : the extremal intensity
values being given, C (0.2, 1), C, (0, 0.4), Cprae (0.2, 1).

1.2, right). Cy et Cpqae Seem to be more sensitive to noise than C. These to

measures are also more disturbed by the delete piece of vessel.

A.2.2.2 Anisotropic Potential

The second potential is a uniform anisotropic potential. The tensor is alogned
with the axis, and horizontal speed is twice as much as horizontal vertical
speed. Figure 1.5 shows some results for this potential. C et C,,,, exhibit the
expected behavior — i.e. they are smaller in the horizontal direction. Since
the shortest paths are straight lines in this context, the expected value for
C, is 0 at any point. In this experiments, we found exact values in this axis
directions. In other direction, they range between 0 and 0.2, with maximum

around the starting point.
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Fi1G. 1.5 Connectivity measures for anisotropic potential. Top, from left to
right : U, Ueye and Ug,. Bottom, from left to right : the extremal intensity
values being given, C (0.5, 1), C, (0, 0.5) — maximale value in the plane is

lower than 0.2, Cpa. (0.5, 1).



Annexe B

Electrodes registration in EEG

using discrete optimization

This appendix has been adapted from the research report [110] corresponding
to a work published in [166]. Tt is an early work in this thesis, independant
from the rest of the presented methods. However, since the algorithm descri-
bed here is currently used by EEG experimenters, and since developping a
full framework for the localization of EEG electrodes from pictures would be
of high interest, we believe it is interesting to reproduce this appendix as a

reference.

B.1 Introduction

Electroencephalography (EEG) is a widely used method for both clinical and
research purposes. Clinically, it is used e.g. to monitor and locate epilepsy,
or to characterize neurological disorders such as sleeping or eating disorders
and troubles related to multiple sclerosis. Its main advantages are its price
compared to magnetoencephalography (MEG), and its very good time reso-
lution compared e.g. to fMRI. Conventionally, EEG readings were directly
used to investigate brain activity from the evolution of the topographies on
the scalp. Nowadays, it is also possible to reconstruct the brain sources that
gave rise to such measurements, solving a so-called inverse problem. To this

purpose, it is necessary to find the electrode positions and to relate them to
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the head geometry recovered from an anatomic MRI. Current techniques to
do so are slow, tedious, error prone (they require to acquire each of the elec-
trodes in a given order with a device providing 3D coordinates|106]) and/or
quite expensive (a specialized system of cameras is used to track and label the
electrodes|175]). Our goal is to provide a cheap and easy system for electrode
localization based on computer vision techniques.

In modern EEG systems, the electrodes (64, 128 or even 256) are organized
on a cap that is placed on the head. system, electrodes, obtain such a once
to obtain used as a some roots between the and those multiple pictures
of the head wearing the cap from various positions. As a preliminary step,
electrodes are localized and their 3D positions are computed from the images
by self-calibration (a technique that recovers the cameras’ positions from the
image information [59]) and triangulation. These are standard techniques
that can provide 3D point coordinates with a quite good accuracy. Remains
the problem of electrode identification which labels each 3D position with the
name of the corresponding electrode. Finding a solution to this last problem
is the focus of this paper. Note, that a good labeling software can also improve
current systems by removing acquisition constraints (such as the recording
of the electrodes in a given order) and by providing better user interfaces.
We propose a method that recovers this labeling from just a few (two or
three) manually annotated electrodes. The only prior is a reference, subject
independent, 3D model of the cap. Our framework is based on combinato-
rial optimization (namely on an extension of the Loopy Belief Propagation
algorithm|118|) and is robust to soft deformations of the cap caused both by
sliding effects and by the variability in subjects” head geometry.

B.2 Problem definition

The inputs of our method consist in :

e a template EEG cap model providing labeled electrodes, along with their
3D positions (in fact, as we will explain further, an important feature of our
method is that only the distances between close electrodes are used). £ will
denote the set of labels (e.g. £L = {Fpz,0z,---}),and C = {C}, | € L} will

be their corresponding 3D positions. C} could be for example the average
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position of electrode [ among a variety of prior measures. However, in our
experiments, it was just estimated on one reference acquisition.

e the measured 3D positions of the electrodes to label, obtained by 3D re-
construction from images. We will denote by M = {M;, i € [1..n]}, these
n 3D points.

The output will be a labeling of the electrodes, i.e. a mapping ¢ from [1..n]

to L. Note that n could be less than the total number |£| of electrodes in

cases where some electrodes are of the cap are not used.

B.3 Motivation

In this section, we discuss other possible approaches for the electrode labeling
problem. As it will be detailed in section B.6, we have tried some of these
methods without any success. This will motivate our energy-based combi-
natorial approach. A simple method could consist in a 3D registration step,
followed by a nearest-neighbor labeling. Let T" be a transformation that sends

M into the spatial referential of C'. A straight labeling could be :
(i) = argmind(C,, T(M,)
S

where d(A, B) denotes the Euclidean distance between points A and B. Ac-

tually, we first tested two direct ways of obtaining an affine transformation

T :

e moment-based affine registration : in this case, we computed first and se-
cond order moments of the sets of points M and C and choose T as an
affine transformation which superimposes these moments.

e / points manual registration : here, we manually labeled 4 particular elec-
trodes in M and took for T' the affine transformation which exactly sends
these 4 electrodes to the corresponding positions in C.

As explained in section B.6, we observed that these two approaches give

very bad average results. One could argue that this might be caused by the

quality of the registration. A solution could be to use more optimal affine
registration methods, like Tterative Closest Points[222, 22]|. Yet, a close look
at what caused bad labeling in our experiments, reveals that this would not

improve the results. The main reasons are indeed that (i) the subject whose
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EEG has to be labeled does not have the same head measurements than the
template, and moreover that (ii) the cap is a soft structure that shifts and
twists from one experiment to another.

It is clear that only a non-rigid registration could send M close to C'. Howe-
ver, modeling the problem in term of space deformation is not suitable. For
instance, a Thin-Plate Spline|27, 79| based algorithm would not be adapted.
Actually, a more suitable framework could be a deformable shape matching
one. We could see our problem as a shape registration one, based on shape de-
formation and intrinsic shape properties|183|, rather than on deforming the
ambient space in order to make the shapes match. Because of the topology
of the electrodes on the cap, relations between points are also of importance.
In that sense, our problem is close to the one investigated by Coughlan et
al. [12, 5], which they solve recovering both deformations and soft correspon-
dences between two shapes. Yet, in our case, we see two main differences :
(i) labeling, rather than shape matching, is the key issue, and (ii) enforcing
relational constraints between points are more important than regularizing
deformations. For these reasons, we propose a method based on optimal la-
beling for which the only (soft) constraints are the distances between nearby
points, without modeling any deformation.

In the remaining of the article, we first state our model and the associated
energy ; we then discuss our choice for an energy minimization algorithm.
Finally, we validate our method giving qualitative and quantitative results

on real experiments.

B.4 Proposed framework

The complete pipeline of our system is depicted figure 2.1. As we already
explained, we do not consider here the 3D reconstruction step, but only the
labeling one. From the measured data M, we construct an undirected graph
G = (V,E), where V' = [1..n] is the set of vertices and F a certain set of edges
which codes the relations between nearby electrodes. As it will become clear
in the following, the choice of F will tune the rigidity of the set of points M.
Practically, the symmetric k-nearest neighbors or all the neighbors closer than

a certain typical distance, are two valid choices. Given an edge e = (i,j) € F
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FiG. 2.1 — Complete pipeline : we obtain 3D positions M (bottom left) by
reconstruction from several (usually 6) pictures (top left). A graph G then is
constructed from these positions (bottom right). Considering a template cap
and associated positions C' (top right), we label the measured electrodes by

estimating ¢* = argmin(U(yp)). In this example, ¢(i) =k, p(j) = [.

for i € V and j € V, we denote by d;; = d(M;, M;) the distance between
points M; and M; in the measured data and by d;; = d(Cy(iy, Cy(y)) the
reference distance between the electrodes (i) and ¢(7). In order to preserve
in a soft way the local structure of the cap, we propose to simply minimize
the following energy :

Ulp) = Z p(dij, dij) (B.4.1)

(i,))eE

where p is a cost-function which penalizes differences between the observed
and template distances. Note that, whereas the global one-to-one character of
@ is not explicitly enforced by this model, the local rigidity-like constraints en-
force it. Graph rigidity theory is a very complex domain (see for example |23]
as an introduction), beyond the purpose of this article.
Following the classical framework of Markov Random Fields (MRF) [125,

21, 70|, this can be rewritten as maximizing the following function :

P(p) = eap(-Ulp)) = [[ ewp(—p(dis,di)) = J] Wisle(i). 0(i)

(i,))€E (i,j)€E

(B.4.2)
Normalizing P by dividing by the sum over all the possible mappings ¢,
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yields a Gibbs distribution over a MRF derived from graph G with £ as
the set of possible labels each vertex. The problem is thus reduced to the

classical case of finding a Mazimum A Posteriori (MAP) configuration of a
Gibbs distribution :

p(o) = = [Tvate@) T visle0) o) (B.43)

eV (i,j)eE

where K is a normalizing constant and v;(¢(i)) = 1 in our case.

B.5 Energy minimization

The problem of finding a MAP configuration of a Gibbs distribution being
NP-complete [102], we cannot expect to get an algorithm that optimally
solves every instance of the problem. Since the seminal work of Geman & Ge-
man |70], who proposed an algorithm that warrants the probabilistic conver-
gence toward the optimal solution however with an unreasonable run-time
several methods have been investigated to maximize general distributions
like (B.4.3). Among these, minimal-cut based methods (often referred to as
GraphCuts), introduced in computer vision and image processing by |74],
has received many attention (see [35, 29]). These methods can achieve global
optimization for a restricted class of energies|[34|. For more general energies,
approximations were proposed [169]. As we experimented|140], these approxi-
mations fail to recover a correct labeling in our problem, which belongs to a
class of multilabel problems that are not easily tackled by GraphCuts.
As a consequence, we opted for a completely different but widely spread al-
gorithm, namely Belief Propagation (BP), and more precisely for its variant
adapted to graphs : Loopy Belief Propagation (LBP). Please see [60] for a
recent reference. Briefly, it consists in propagating information through the
edges of the graph : each node i sends messages to its neighbors k, measu-
ring the estimated label of k from its own point of view. Messages are passed
between nodes iteratively until a convergence criterion is satisfied. This al-
gorithm is neither guaranteed to converge nor to converge to an optimal
solution. However, it behaves well in a large variety of early vision problems.

Empirical and theoretical convergence of this family of methods were studied
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for instance in [141, 216].
Actually, we designed for this work an original and faster version of LBP. It
is an improved version of LBP based on the idea of [103].

Let us first explain classical LBP algorithm.

B.5.1 LBP

Loopy Belief Propagation (LBP) algorithm [60] is a widely used method to
find approximate solutions to the MAP problem when the sub-modularity
condition is not fulfilled. It consists in propagating information through the
vertices of the mesh seen as a graph : roughly speaking, each node 7 sends
messages to its neighbors k, measuring the estimated label of £ from the
point of view of i.

The LBP algorithm is derived from an exact algorithm working on trees called
Belief Propagation (BP) or Maz-Product algorithm [119]. In the original BP,
messages measuring belief in a local labeling propagate from the leafs to
the root of the tree. Then a backward pass is computed in which label that
maximizes the belief is chosen at each node, knowing the label of the father.
Let us introduce some notations :

r the root of the tree, s the application that maps a node to its sons and f
the application that maps a node to its father. L is the set of the leafs of the
tree.

m;_; will denote the message passed by node V; to node Vj. m;_;(l) is a
measure of how confident node V; is that node Vj; is given the [ label, i.e.
p(V;) = 1.

We denote by b;(Li, L)) = ©i(l) )i (Lray, ) HjES(i) m;_i(l;) for [, € C" and
lriy € C the joint belief that node V) is assigned label [;(;) and node V; is
assigned label [;.

The BP algorithm is described in algorithm 8.

When the graph is not a tree, the ordered treatment of BP is impossible to
apply. However, disregarding the relation of paternity of the nodes, it is still
possible to pass messages from nodes to nodes in the graph. A belief can
also be computed the same way as for BP. The idea of LBP is then to apply

the message passing simultaneously or sequentially to all the neighboring
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Algorithm 8 Belief Propagation
K=1L
FORWARD PASS
while V; € K do

remove V; from K

compute m; .z (L5i)) = maxy, (bi(l;, L)) for all Iy, € C.
compute §(lyi)) = argmazy, (b;(l;, L)) for all Iy € C.
if all sons of Vj(;) have been treated, add Vyq to K
end while
BACKWARD PASS
Br = 6,
K =s(r)
while V; € K do
remove V; from K
compute p; = 6;(Pra))
K =KuUs(V)
end while

return ¢

nodes of the graph. A stopping criterion is then to be defined - usually a
convergence criterion or a fixed number of iterations.

Let us adapt slightly the notations and denote by N (i) the set of neighbor
nodes of V;.

mj_; is the message passed by node V; to node V; at time . Let bj(l;,1;) =
illi) Vi (L 1) Hken @y ag Mii(li) for (1;,1;) € C? be the joint belief for
neighbor nodes V; and V;. Finally, let b;(l;) = 1i(l;) [ [yen) 71— (1) be the
belief vector at node V; and time t (taking into account all the neighbors of
node V;).

This leads to algorithm 9.

This algorithm is neither guaranteed to converge nor to converge to an opti-
mal solution. However, it behaves well in a large variety of early vision pro-
blems. Empirical and theoretical convergence of this kind of methods were
studied for instance in |141] and [216].

Notice that the complexity of one step of this algorithm is basically |(C)[?|E|
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Algorithm 9 Loopy Belief Propagation

set m)_,(I;) = 1 for all (p,q) € E.
fort=1,t<T,t++ do
for all (z,7) in V do
mi_;(l;) = mazyec(b; (i, 1))
end for
end for

return @; = argmaxy,ccb! (;)

where |E| is the number of edges of the graph.

B.5.2 Improving belief propagation

Several methods have been proposed to improve both the convergence and
the quality of results obtained by LBP algorithm. [213| proposed a slightly
different algorithm based on a different theoretical framework with inter-
esting convergence properties. More recently, [103] proposed an interesting
modification of LBP based on label pruning according to current belief at
each node, and on a choice of a priority order for covering all nodes. But,
their method show a greedy behavior, since a label cannot appear again once
it has been pruned.

A new intermediate and simpler version of LBP based on label pruning is
proposed here. It is based on the idea that if a label is very unlikely for a
given vertex, it ought to be useless to use this label for the calculation of the
outgoing messages for this vertex. Hence, after each step, the belief vector
bL(l;) is computed for each node as well as its maximum and minimum values
M} and m}. Then, each label with a belief lower than the geometric mean g!
of m! and M{ is declared inactive for the next iteration only, e.g. it won’t be
considered as a candidate label in computing outgoing messages toward the
neighbors of V; (notice that the choice of the mean is somewhat arbitrary. Tt
should be adapted to the structure of the belief vector. For our application,
we didn’t notice effect of the choice of a threshold between 0.5 and 0.8 over
speed nor quality of results).

Let us denote by Act! the set of active labels of V; computed at iteration t.



192 Electrodes registration in EEG using discrete optimization

Our method is described algorithm 10.

Algorithm 10 Fast Loopy Belief Propagation

set Act) = C for all V; € V
set m)_ (I;) = 1 for all (p,q) € E.
fort=1,t<T,t++ do
for all (i,7) in V do
mi_ (1) = mazy g (570 1)
set Actt ={l; : l; > gt}
end for

end for

return @; = CLTgmal"lierzT(li)

The |C|? factor for each edge in the complexity for one step is then replaced

by a |C||C'| where |C’| is the number of active labels of the original node.

B.6 Experiments

We used 6 sets of 63 electrodes. Each set consists in 63 estimated three

dimensional points, acquired on different subjects with the same EEG cap

and manually labeled. To test our algorithm as extensively as possible, we

ran the algorithm on each set, taking successively each of the other sets

as a reference. We hence simulated 30 different pairs (M, C'). At least one

electrode in M was manually labeled (see further).

E was chosen the following way : we first estimated a typical neighbor dis-

tance by computing the maximum of the nearest neighbor distance for all

electrodes in M, and then considered as belonging to F, every pair of distinct

electrodes within less than three times this distance. In order to accelerate

and enforce convergence, we used the three following technical tricks :

e we used our modified LBP algorithm

e we added a classical momentum term [111]

e denoting by V; the subset of I of the manually labeled electrodes, we added
the set of edges V; x V to E, allowing accurate information to propagate

quickly in the graph.
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Although non indispensable, this led to a mean running time of less than
11s on a standard 3GHz PC and to a smaller number of non converging
optimization.

The cost-function p was of the form p(x,y) = ?ﬁ + & where € is a small
positive constant. We did not notice sensitivity with respect to this choice, as
far as the following key conditions are fulfilled : (i) penalizing differences bet-
ween z and y and (ii) penalizing small values of x or y. This latest condition
enforces (yet does not warrant) a one-to-one mapping .

Different experiments where carried out. First, the prior consisted in ma-
nually labeling electrodes Fpz, Oz, and T8. In that case, our method reco-
vers all the electrodes, which was, as expected, not at all the case with an
affine registration+nearest neighbor approach (see figure 2.2). Actually, we
observed that labeling (Oz,T8) seems sufficient. Yet, without any further
data, we do not consider that labeling two electrodes only is reliable. Figure
2.4 shows a result on a case where affine registration does not work and the
final 3D reconstruction with our method.

To demonstrate the robustness of our algorithm, we also tested hundreds
of other conditions, in which 1, 2 or 3 randomly chosen electrodes were
"manually" labeled. Non-convergence was only observed for non reasonable
choices of "manually" labeled electrodes : indeed, if they are chosen on the
sagittal medium line, there is an undetermination due to the left-right sym-
metry of the cap. This does not occur when the electrodes are set by a human
operator. The classification error rates are low (see figure 2.2 again) but not
negligible. This makes us plead for a manual labeling of two or three fixed
and easy to identify electrodes, e.g. (Fpz,Oz,T8).

Finally, we also successfully tested cases for which n < |£|, i.e. when some
electrodes are missing : if a few electrodes were forgotten in the 3D recons-
truction process, our algorithm should still be able to label the detected ones.
This should allow us to find which electrodes were forgotten, to compute their
approximate 3D position from the template cap model and to use this infor-
mation to detect them back in the pictures. To carry our experiments, we
removed randomly from 1 to 10 electrodes in the data sets to be labeled. La-
belisation was performed using the (Fpz, Oz, T8) prior as explained above.

Results are synthetized figure 2.3.
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NC' | misclassified labels

Affine registration (moment based) - 48.7%
Affine registration (4 manual points) - 21.3%
Our method - (Fpz, Oz, T8) manually labeled | 0% 0%

Our method - (Oz,T8) manually labeled 0% 0%

Our method - 3 random electrodes labeled 0% 0.03%
Our method - 2 random electrodes labeled 0.3% 0.2%
Our method - 1 random electrode labeled 4.2% 3,7%

Fia. 2.2 — Classification errors. NC' gives the percentage of instances of the
problem for which our method did not converge. Misclassified labels percen-

tages are estimated only when convergence occurs.

missing electrodes | mislabeled electrodes
1 0%
0%
0.01%
0.02%
0.02%
0.04%
0.04%
0.3%
1.1%
1.1%

O | J| | O =W (N

—_
o

FiG. 2.3 — Results with missing electrodes.

B.7 Discussion

Experiments show that our framework leads to fast, accurate and robust
labeling on a variety of data sets. We consider providing on the WEB in
a near future an complete pipeline including our algorithm - ranging from
3D reconstruction of electrodes to their labeling. Such a system would only

require a standard digital camera and would imply minimal user interaction
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FiG. 2.4 — A sample result. M is in red and C in green. Top left : 63 esti-
mated 3D electrodes positions. Top center : reference. Bottom left : subset
of a labeling with the moment based algorithm ; C4 is wrongly labeled CP4,
and F1 is labeled F3 (not shown). Bottom center : a subset of correct corres-
pondences retrieved by our algorithm. Top and bottom right : full labeling

retrieved by our algorithm, superimposed with anatomical MRI

(manually labeling three electrodes).
Note that the flexibility of our M RF' formulation allows different priors. We

plan for instance to use the color of electrodes on the images as a further
prior for labeling. This could lead to a fully automated system, where no

user interaction would be required.



196 Electrodes registration in EEG using discrete optimization



Bibliographie

1]

2]

3]

4]

[5]

[6]

7]

18]

9]
[10]
[11]

[12]

Shimbel A. Structure in communication nets. In Polytechnic Press of the Poly-
technic institute of Brooklyn, editor, Proceedings of the Symposium on Information
Networks, pages 199-203, 1954. (Page 40.)

Varol Akman. Unobstructed shortest paths in polyhedral environments. Springer-
Verlag New York, Inc., New York, NY, USA, 1987. (Page 32.)

Schrijver Alexander. Combinatorial Optimization. Springer-Verlag Berlin Heidelberg
New York, 2003. (Page 17.)

A. Anwander, M. Tittgemeyer, D. Y. von Cramon, A. D. Friederici, and T. R.
Knosche.  Connectivity-based parcellation of broca’s area.  Cerebral Corter,
17(4) :816 825, 2007. (Page 164.)

A Rangarajan, J.M. Coughlan, and A.L. Yuille. A bayesian network framework for
relational shape matching. In 9th IEEE ICCV, pages 671 678, 2003. (Page 186.)

R. Ardon and L. Cohen. Fast constrained surface extraction by minimal paths. In
2nd IEEE Workshop on Variational, Geometric and Level Set Methods in Computer
Vision, pages 233—244, 2003. (Page 33.)

Roberto Ardon and Laurent D. Cohen. Fast constrained surface extraction by mi-
nimal paths. Int. J. Comput. Vision, 69(1) :127-136, 2006. (Page 33.)

Stephen Aylward, Stephen Pizer, David Eberly, and Elizabeth Bullitt. Intensity
ridge and widths for tubular object segmentation and description. In Proceedings of
the 1996 Workshop of MMBIA ’96, page 131, Washington, DC, USA, 1996. IEEE
Computer Society. (Page 104.)

G. Barles and P.E. Souganidis. Convergence of approximation schemes for fully non-
linear second order equations. Asymptotic Analalysis, 4 :271-283, 1991. (Page 58.)
Alberto Bartesaghi and Guillermo Sapiro. A system for the generation of curves on
3d brain images. Human Brain Mapping, 14(1), 2001. (Page 33.)

Peter J. Basser, James Mattiello, and Denis Lebihan. Mr diffusion tensor spectro-
scopy and imaging. Biophysical Journal, 66 :259-267, 1994. (Pages 135 and 155.)
P.J. Basser, J. Mattiello, and D. LeBihan. Estimation of the effective self-diffusion
tensor from the nmr spin echo. Journal of Magnetic Resonance B, 103(3) :247-254,
1994. (Page 156.)

197



198

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

BIBLIOGRAPHIE

Pierre-Louis Bazin and Dzung L. Pham. Topology correction of segmented me-
dical images using a fast marching algorithm. Comput. Methods Prog. Biomed.,
88(2) :182 190, 2007. (Page 26.)

T. E. J. Behrens, H. Johansen-Berg, S. Jbabdi, M. F. S. Rushworth, and M. W.
Woolrich. Probabilistic diffusion tractography with multiple fibre orientations. what
can we gain? NeuroImage, 34(1) :144-155, 2007. (Page 156.)

F. Benmansour, S. Bonneau, and L. Cohen. Finding a closed boundary by growing
minimal paths from a single point on 2d or 3d images. In IEEE Computer Society
Workshop on Mathematical Methods in Biomedical Image Analysis, page to appear,
2007. (Page 145.)

Fethallah Benmansour and Laurent D. Cohen. Tubular anisotropy for 3d vessels
segmentation. In SSVM, pages 1425, 2009. (Page 106.)

Fethallah Benmansour, Laurent D. Cohen, Max W.K. Law, and Albert C.S. Chung.
Tubular anisotropy for 2d vessels segmentation. In CVPR, June 2009. (Page 106.)

H. E. Bennink, Hans C. van Assen, Geert J. Streekstra, Renester Wee, J. A. E.
Spaan, and Bart M. ter Haar Romeny. A novel 3d multi-scale lineness filter for
vessel detection. In Nicholas Ayache, Sébastien Ourselin, and Anthony J. Maeder,
editors, Proceedings of MICCAI (2), volume 4792 of Lecture Notes in Computer
Science, pages 436—443. Springer, 2007. (Page 104.)

C. Berge. Théorie des graphes et ses applications. Collection Univesitaire des Ma-
thématiques, Dunod, Paris, 1958. (Page 41.)

@rjan Bergmann, Gordon Kindlmann, Sharon Peled, and Carl-Fredrik Westin. Two-
tensor fiber tractography. In ISBI, pages 796—799, Arlington, Virginia, USA, 2007.
(Page 156.)

J. Besag. Spatial interaction and the statistical analysis of lattice systems. Journal
Royal Statis. Soc., B-148 :192-236, 1974. (Page 187.)

P.J. Besl and N.D. McKay. A method for registration of 3-d shapes. IEEE Trans.
Pattern Anal. Mach. Intell., 14(2) :239-256, 1992. (Page 185.)

B.Hendrickson. Conditions for unique graph realizations. SIAM J. Comput.,
21(1) :65-84, 1992. (Page 187.)

M. Bicego, S. Dalfini, G. Vernazza, and P. Murino. Automatic road extraction from
aerial images by probabilistic contour tracking. In ICIP03, pages III : 585-588, 2003.
(Page 105.)

J.-D. Boissonnat and M. Yvinec. Algorithmic Geometry, chapter Voronoi diagrams :

Euclidian metric, Delaunay complexes, pages 435—443. Cambridge University Press,
1998. (Page 138.)

T. Bonhoeffer and A. Grinvald. Brain Mapping : the Methods (Toga, AW, Mazziotta,
JC Eds.), chapter Optical imaging based on intrinsic signals : the methodology.,
pages 55 226 97. Academic Press, California, 1996. (Page 136.)



BIBLIOGRAPHIE 199

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

F.L. Bookstein. Principal warps : Thin-plate splines and the decomposition of de-
formations. IEEE Trans. PAMI, 11(6) :567-585, 1989. (Page 186.)

Sylvain Bouix, Kaleem Siddiqgi, and Allen Tannenbaum. Flux driven automatic
centerline extraction. Medical Image Analysis, 9(3) :209-221, 2005. (Page 106.)

Y. Boykov, O. Veksler, and R. Zabih. Markov random fields with efficient approxi-
mations. In CVPR 98, page 648, Washington, DC, USA, 1998. IEEE. (Page 188.)

Alexander Bronstein, Michael Bronstein, and Ron Kimmel. Numerical Geometry of
Non-Rigid Shapes. Springer Publishing Company, Incorporated, 2008. (Pages 25,
39, and 80.)

Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel. Weighted distance
maps computation on parametric three-dimensional manifolds. J. Comput. Phys.,
225(1) :771 784, 2007. (Page 99.)

RB Buxton, K Uludag, DJ Dubowitz, and TT Liu. Modeling the hemodynamic
response to brain activation. Neuroimage, 23(Suppl 1) :S220-S233, 2004. (Page 136.)

J. Canny. A computational approach to edge detection. IEEE Transactions Pattern
Analysis and Machine Intelligence, 8(6) :679 698, November 1986. (Page 104.)

K. V. Chandrinos, M. Pilu, R. B. Fisher, and P. E. Trahanias. Image processing
techniques for the quantification of atherosclerotic changes. In Mediterranian Conf.
Medical and Bio. Eng. and Computing., 1998. (Page 104.)

Thitiporn Chanwimaluang and Guoliang Fan. An efficient algorithm for extraction
of anatomical structures in retinal images. In ICIP, volume 1, pages 1093 1096,
2003. (Page 104.)

S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M. Goldbaum. Detection of
blood vessels in retinal images using two-dimensional matched filters. IEEE Tran-
sactions on Medical Imaging, 8 :263 269, 1989. (Pages 104 and 110.)

L. Cohen and R. Kimmel. Fast marching the global minimum of active contours,
1996. (Page 105.)
Laurent Cohen and Ron Kimmel. Global minimum for active contour models : A

minimal path approach. International Journal of Computer Vision, 24 :57 78, 1997.
(Pages 28, 116, 117, 122, and 132.)

L.D. Cohen. Minimal Paths and Fast Marching Methods for Image Analysis. Nikos
Paragios and Yunmei Chen, 2005. (Pages 116, 117, 122, and 132.)

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
algorithms. MIT Press and McGraw-Hill, 1990. (Page 22.)

D. J. Cornforth, H. F. Jelinek, J. J. G. Leandro, J. V. B Soares, R. M. Cesar-
Jr., M. J. Cree, P. Mitchell, and T. R. J. Bossomaier. Development of retinal blood

vessel segmentation methodology using wavelet transforms for assessment of diabetic
retinopathy. Complezity International, 11, 2005. (Pages 104 and 105.)



200

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

BIBLIOGRAPHIE

J.M. Coughlan and S.J. Ferreira. Finding deformable shapes using loopy belief
propagation. In 7th ECCV, pages 453-468, 2002. (Page 186.)

Michael G. Crandall, Hitoshi Ishii, and Pierre L. Lions. User’s guide to viscosity
solutions of second order partial differential equations. Bulletin of the American
Mathematical Society, 27(1) :1-67, 1992. (Page 36.)

Creativision. Human machine intergation for vessel segmentation, 2008.
http ://retina.incubadora.fapesp.br/portal/references/references.
(Page 104.)

M.J. Cree, D.J. Cornforth, and H.F. Jelinek. Vessel segmentation and tracking
using a two-dimensional model. In Proceedings of the Image and Vision Computing
Conference, New Zealand 2005, University of Otago, 2005. (Page 105.)

Per-Erik Danielsson and Qingfen Lin. A modified fast marching method. In SCIA,
pages 1154-1161, 2003. (Page 67.)

Huang Davidand and Kaiser Peter K.and Lowder Careen Y.and Traboulsi Elias.
Retinal Imaging. 2005. (Page 103.)

Thomas Deneux. Hemodynamic Models : Investigation and Application to Brain
Imaging Analysis. PhD thesis, Ecole Polytechnique, 2006. (Page 136.)

T. Deschamps and L.D. Cohen. Fast extraction of minimal paths in 3D images and
applications to virtual endoscopy. Medical Image Analysis, 5(4) :281-299, December
2001. (Pages 28 and 105.)

Thomas Deschamps and Laurent D. Cohen. Fast extraction of tubular and tree 3d
surfaces with front propagation methods. In In Proc. of 16th ICPR, 1 :731 201373/,
pages 731-734, 2002. (Pages 66, 105, and 106.)

M Descoteaux, R Deriche, T. R. Knosche, and A Anwander. Deterministic and pro-
babilistic tractography based on complex fibre orientation distributions. IEEE Tran-
sactions in Medical Imaging, 28(2) :269-286, Febuary 2009. (Pages 156 and 164.)

M. Descoteaux, R. Deriche, T.R. Knosche, and A. Anwander. Deterministic and
probabilistic tractography based on complex fibre orientation distributions. MedImyg,
28(2) :269 286, February 2009. (Page 168.)

Maxime Descoteaux, Louis Collins, and Kaleem Siddiqi. Geometric flows for segmen-
ting vasculature in mri : Theory and validation. In In Medical Imaging Computing
and Computer-Assisted Intervention, pages 500-507, 2004. (Pages 104 and 105.)

E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1) :269 271, December 1959. (Page 41.)

L Euler. De linea brevissima in superficie quacunque duo qualibe puncta jungente.
1732. (Page 32.)

L. Evans. Partial Differential Equations. American Mathematical Society, 2002.
(Page 38.)



BIBLIOGRAPHIE 201

[57]

[58]

[59]

[60]

|61]

[62]

[63]

|64]

[65]

[66]

[67]

|68]

[69]

[70]

171]

Ricardo Fabbri, Luciano Da F. Costa, Julio C. Torelli, and Odemir M. Bruno. 2d
euclidean distance transform algorithms : A comparative survey. ACM Comput.
Surv., 40(1) :1 44, 2008. (Pages 26 and 99.)

B. Fang, W. Hsu, and M.L. Lee. Reconstruction of vascular structures in retinal
images. In ICIP, volume 2, pages 157-160, 2003. (Page 104.)

O. Faugeras, Q.T. Luong, and T. Papadopoulo. The Geometry of Multiple Images.
MIT Press, 2001. (Page 184.)

P. Felzenszwalb and D. Huttenlocher. Efficient belief propagation for early vision,
2004. (Pages 188 and 189.)

M. A. Fischler, J. M. Tenenbaum, and H. C. Wolf. Detection of roads and linear
structures in low-resolution aerial imagery using a multisource knowledge integration
technique. pages 741 752, 1987. (Page 104.)

Robert W. Floyd. Algorithm 245 : Treesort. Communications of the ACM,
7(12) :701, 1964. (Page 45.)
Ro F. Frangi, Wiro J. Niessen, Koen L. Vincken, and Max A. Viergever. Multiscale

vessel enhancement filtering. In Proceedings of MICCAI volume 1496, pages 130
137. Springer-Verlag, 1998. (Page 104.)

Max Frenkel and Ronen Basri. Curve matching using the fast marching method. In
A. Rangarajan, editor, proceedings of EMMCVPR, 2003. (Page 30.)

P. Fua and Y. G. Leclerc. Model driven edge detection. Machine Vision and Appli-
cations, 3 :45 56, 1990. (Page 28.)

S. Gallot, D. Hulin, and J. Lafontaine. Riemannian Geometry. Springer, Berlin,
1993. (Pages 32, 33, and 34.)

X. Gao, A. Bharath, A. Stanton, A. Hughes, N. Chapman, and S. Thom. A method
of vessel tracking for vessel diameter measurement on retinal images. In ICIP01,
volume 2, pages 881-884, 2001. (Page 105.)

S Garrido, L. Moreno, M Abderrahim, and F Martin. Path planning for mobile
robot navigation using voronoi diagram and fast marching. Intelligent Robots and
Systems, october 2006. (Page 27.)

S. Garrido, L. Moreno, and D. Blanco. Exploration of a cluttered environment using
voronoi transform and fast marching. Robot. Auton. Syst., 56(12) :1069-1081, 2008.
(Page 27.)

S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Trans. PAMI, 6(6) :721 741, Nov. 1984. (Pages 187
and 188.)

Michael Goldbaum, Saied Moezzi, Adam Taylor, Shankar Chatterjee, Jeff Boyd,
Edward Hunter, and Ramesh Jain. Automated diagnosis and image understanding

with object extraction, object classification, and inferencing in retinal images. In in



202

[72]

[73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

BIBLIOGRAPHIE

Image Processing, proceedings of IEEE International Conference on Image Proces-
sing, volume 3, pages 695698, 1996. (Page 104.)

G. Gonzalez, F. Fleuret, and P. Fua. Learning rotational features for filament de-

tection. In Proceedings of the IEEE international conference on Computer Vision

and Pattern Recognition (CVPR), 2009. (Page 104.)

R. C. Gonzalez and R. E. Woods. Digital Image Processing. Addison-Wesley, Rea-
ding, MA, 1992. (Page 112.)

D.M. Greig, B.T. Porteous, and A.H. Seheult. Exact maximum a posteriori estima-
tion for binary images. J. R. Statist. Soc. B, 51 :271-279, 1989. (Page 188.)

A. Grinvald, T. Bonhoeffer, I. Vanzetta, A. Pollack, E. Aloni, R. Ofri, and D. Nel-
son. High-resolution functional optical imaging : from the neocortex to the eye.
Ophthalmol. Clin. North. Am., 17(1) :53 69, 2004. (Page 136.)

D. Guo and P. Richardson. Automatic vessel extraction from angiogram images. In
Computers in Cardiology, pages 441 444, 1998. (Page 104.)

William E. Hart, Michael Goldbaum, Paul Kube, and Mark R. Nelson. Automated
measurement of retinal vascular tortuosity. In Proceedings of AMIA Fall Conference,
pages 459-463, 1997. (Page 106.)

M.S. Hassouna and A.A. Farag. Robust skeletonization using the fast marching
method. In ICIP05, pages I : 437-440, 2005. (Page 26.)

H.Chui and A. Rangarajan. A new algorithm for non-rigid point matching. In
CVPR, pages 2044 2051, 2000. (Page 186.)

W. Higgins, W. Sypra, R. Karwoski, and E. Ritman. System for analyzing hig-
resolution three-dimensional coronary angiograms. IEEE Transactions on Medical
Imaging, 15 :377-385, 1996. (Page 104.)

Jeffrey Ho, Jongwoo Lim, Ming-Hsuan Yang, and David J. Kriegman. Integrating
surface normal vectors using fast marching method. In 9th European Conference on
Computer Vision (ECCV 2006), pages 239-250, May 2006. (Page 30.)

A. Hoover, V. Kouznetsova, , and M. Goldbaum. Locating blood vessels in retinal
images by piecewise threshold probing of a matched filter response. In Proceedings
IEEE Transactions on Medical Imaging, number 19 in 3, pages 203 210. IEEE Com-
puter Society, 2000. (Page 104.)

H. Hopf and W. Rinow. Ueber den begriff der vollstandigen differentialgeometrischen
flachen. Comm. Math. Helv., 3 :209-225, 1931. (Page 34.)

H. Ishikawa. Exact optimization for markov random fields with convex priors, 2003.
(Page 188.)

H. Ishikawa and D. Geiger. Mapping image restoration to a graph problem, 1999.
(Page 188.)



BIBLIOGRAPHIE 203

|86]

[87]

[88]

[89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

98]

K. M. Jansons and D. C. Alexander. Persistent angular structure : new insights fom
diffusion magnetic resonance imaging data. Inverse Problems, 19 :1031-1046, 2003.
(Pages 156 and 164.)

S. Jbabhdi, P. Bellec, R. Toro, J. Daunizeau, M. Pélégrini-Issac, and H. Benali. Ac-
curate anisotropic fast marching for diffusion-based geodesic tractography. Journal
of Biomedical Imaging, 2008(1) :1-12, 2008. (Pages 31 and 99.)

S Jbabdi, P Bellec, R Toro, J Daunizeau, M Pelegrini-Issac, and H Benali. Accurate
anisotropic fast marching for diffusion-based geodesic tractography. International
Journal of Biomedical Imaging, 2008 :1-12, 2008. (Page 157.)

H. F. Jelinek and R. M. Cesar-Jr. Segmentation of retinal fundus vasculature in non-
mydriatic camera images using wavelets. In J. Suri and T. Laxminarayan, editors,
Angiography and Plaque Imaging : Advanced Segmentation Techniques, pages 193
224. CRC Press, 2003. (Page 104.)

Bing Jian and Baba C. Vemuri. A unified computational framework for deconvolu-
tion to reconstruct multiple fibers from diffusion weighted mri. IEEE Transactions
on Medical Imaging, 26(11) :1464-1471, 2007. (Pages 156 and 164.)

L. Jonasson, X. Bresson, P. Hagmann, J. Thiran, and V. Wedeen. Representing
Diffusion MRI in 5D Simplifies Regularization and Segmentation of White Matter
Tracts. I[EEE Transactions on Medical Imaging, 26 :1547 1554, 11 2007. (Pages 107
and 159.)

R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.
Thatcher, editors, Complezity of Computer Computations, pages 85-103. Plenum
Press, 1972. (Page 40.)

Y. Kawata, N. Niki, and T. Kumazaki. An approach for detecting blood vessel
diseases from cone-beam ct image. In Proceedings of the International Conference
on Image Processing, volume 2, page 2500, Washington, DC, USA, 1995. IEEE
Computer Society. (Page 104.)

R. Kimmel and A. M. Bruckstein. Global shape from shading. Computer Vision
and Image Understanding, 62(3) :360 369, November 1995. (Page 30.)

R. Kimmel and A. M. Bruckstein. Regularized laplacian zero crossings as optimal
edge integrators. Int. J. Comput. Vision, 53(3) :225-243, 2003. (Page 28.)

R. Kimmel and J.A. Sethian. Fast marching methods for robotic navigation with
constraints. Technical Report 669, CPAM,Univ. of California, Berkeley, 1996.
(Page 27.)

R. Kimmel and J.A. Sethian. Fast marching methods on triangulated domains.
PNAS, 95(15) :8431-8435, July 1998. (Pages 80 and 99.)

Ron Kimmel and Nahum Kiryati. Finding shortest paths on surfaces by fast global
approximation and precise local refinement. Journal of Pattern Recognition and
Artificial Intelligence, 10 :643 656, 1996. (Page 48.)



204

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

BIBLIOGRAPHIE

Ron Kimmel and James A. Sethian. Optimal algorithm for shape from shading
and path planning. Journal of Mathematical Imaging and Vision, 14 :2001, 2001.
(Pages 27, 30, 32, and 76.)

C. Kirbas and F. Quek. A review of vessel extraction techniques and algo-
rithms. Technical report, VisLab Wright State University, Dayton, Ohio, Nov 2000.
(Page 104.)

N. Kiryati and G. Szekely. Estimating shortest paths and minimal distances on digi-
tized three-dimensional surfaces. PR, 26(11) :1623 1637, November 1993. (Page 48.)

V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph
cuts? In ECCV (3), pages 65-81, 2002. (Page 188.)

N. Komodakis and G.Tziritas. Image completion using global optimization. In CVPR
’06, Washington, DC, USA, 2006. IEEE Computer Society. (Pages 189 and 191.)

Ender Konukoglu. Modeling Glioma Growth and Personalizing Growth Models in
Medical Images. PhD thesis, University of Nice-Sophia Antipolis, 2009. (Page 99.)

S.P. Kozaitis and R.H. Cofer. Lineal feature detection using multiresolution wavelet
filters. PhEngR.S, 71(6) :689-698, June 2005. (Page 104.)

D. Kozinska and K. Nowinski. Automatic alignment of scalp electrode positions
with head mrivolume and its evaluation. In Engineering in Medicine and Biology,

BMES/EMBS Conference, Atlanta, Oct 1999. (Page 184.)

B. W. Kreher, J. F. Schneider, J. Mader, E. Martin, Hennig J, and K.A. II'ya-
sov. Multitensor approach for analysis and tracking of complex fiber configurations.
Magnetic Resonance in Medicine, 54 :1216-1225, 2005. (Page 156.)

N Kriegeskorte and R Goebel. An efficient algorithm for topologically correct seg-
mentation of the cortical sheet in anatomical mr volumes. Neuroimage, 14(2) :329
46, August 2001. (Page 26.)

K K Kwong, J W Belliveau, D A Chesler, I E Goldberg, R M Weisskoff, B P Poncelet,
D N Kennedy, B E Hoppel, M S Cohen, and R Turner. Dynamic magnetic reso-
nance imaging of human brain activity during primary sensory stimulation. PNAS,
89(12) :5675 5679, June 1992. (Page 135.)

Synge J. L. Geometrical Optics. An introduction to Hamilton’s method. 37. Cam-
bridge Tracts in Mathematics and Mathematical Physics, Cambridge, University
Press, New York, 1937. (Page 28.)

M. Lalonde, L. Gagnon, and M.-C. Boucher. Non-recursive paired tracking for vessel
extraction from retinal images. In Proceedings of the 31st International Symposium
on Robotics, pages 61-68, may 2000. (Page 105.)

B. S. Y. Lam and H. Yan. A novel vessel segmentation algorithm for pathological
retina images based on the divergence of vector fields. IEEE Transactions on Medical
Imaging, 27(2) :237 246, 2008. (Page 104.)



BIBLIOGRAPHIE 205

[113]

[114]

[115]

[116]
[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, U.K.,
2006. Also available at http ://planning.cs.uiuc.edu/. (Pages 22 and 27.)

Max W. Law and Albert C. Chung. Three dimensional curvilinear structure detec-
tion using optimally oriented flux. In ECCV 08 : Proceedings of the 10th European
Conference on Computer Vision, pages 368-382, Berlin, Heidelberg, 2008. Springer-
Verlag. (Page 104.)

Max W.K. Law and Albert C.S. Chung. Vessel and intracranial aneurysm segmen-
tation using multi-range filters and local variances. In Nicholas Ayache, Sébastien
Ourselin, and Anthony Maeder, editors, Medical Image Computing and Computer-
Assisted Intervention — MICCAI 2007, volume 4791 of LNCS, pages 866—874. Sprin-
ger, 2007. (Page 104.)

John M. Lee. Riemannian Manifolds. Springer-Verlag, 1980. (Page 33.)

Lenglet. Geometric and Variational Methods for DTI Processing. PhD thesis, IN-
RIA /Université de Nice-Sophia Antipolis, December 2006. (Page 168.)

Christophe Lenglet, Emmanuel Prados, Jean-Philippe Pons, Rachid Deriche, and
Olivier Faugeras. Brain Connectivity Mapping using Riemannian Geometry, Control
Theory and PDEs. SIAM Journal on Imaging Sciences, 2 :285-322,2009. (Page 168.)

Leyzorek, Gray, Johnson, Ladew, Meaker, Petry, and Seitz. First annual report.
Technical report, Investigation of Model Technique, Case Institute of Technology in
Cleveland Ohio, 1957. (Page 41.)

Hua Li and Anthony Yezzi. Vessels as 4d curves : Global minimal 4d paths to extract
3d tubular surfaces. In CVPRW 06, page 82, Washington, DC, USA, 2006. IEEE
Computer Society. (Pages 105, 106, 107, 116, 117, 120, 122, and 132.)

I. Liu and Y. Sun. Recursive tracking of vascular networks in angiograms based on
the detection-deletion scheme. IEEE Transactions on Medical Imaging, 12(2) :334—
341, 1993. (Page 105.)

D. Lowe. Distinctive image features from scale-invariant keypoints. In International
Journal of Computer Vision, volume 20, pages 91-110, 2003. (Page 137.)

Ford L.R. Network flow theory. Technical report, RAND-Santa Monica, August
1956. (Page 40.)

L.A. Lyusternik. Shortest paths, variational problems, volume 13. Popular lectures
in mathematics, PERGAMON, 1964. (Page 32.)

P. Lévy. Chaines doubles de markov et fonctions aléatoires de deux variables.
C.R.Académie des sciences, 226 :53 55, 1948. (Page 187.)

Mai S. Mabrouk, Nahed H. Solouma, and Yasser M. Kadah. Survey of retinal image
segmentation and registration. ICGST International Journal on Graphics, Vision
and Image Processing, 6 :1 11, 2006. (Page 104.)



206

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

BIBLIOGRAPHIE

R. Malladi and J. A. Sethian. A real-time algorithm for medical shape recovery. In
ICCV 98 : Proceedings of the Sizth International Conference on Computer Vision,
page 304, Washington, DC, USA, 1998. IEEE Computer Society. (Page 28.)

Ravikanth Malladi, James A. Sethian, and Baba C. Vemuri. Shape modeling with
front propagation : A level set approach. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 17 :158-175, 1995. (Page 105.)

P. Mansfield. Multi-planar image formation using nmr spin echoes. Journal of
Physics C : Solid State Physics, 10(3) :L55 L58, 1977. (Page 135.)

F. Mao, S. Ruan, A. Bruno, C. Toumoulin, R. Collorec, and P. Haigron. Extrac-
tion of structural features in digital subtraction angiography. In Proceedings of the

Biomedical Engineering Days, pages 166—-169, august 1992. (Page 104.)

Alberto Martelli. Application of heuristic search methods to edge and contour de-
tection. Communications of the ACM, 19(2) :73 83, February 1976. (Page 21.)

Pavel Matula, Jan Huben, and Michal Kozubek. Fast marching 3d reconstruction
of interphase chromosomes. In Milan Sonka, Ioannis A. Kakadiaris, and Jan Kybic,
editors, ECCV Workshops CVAMIA and MMBIA, volume 3117 of Lecture Notes in
Computer Science, pages 385-394. Springer, 2004. (Page 28.)

T. Mclnerney and D. Terzopoulos. T-snakes : Topology adaptive snakes. Medical
Image Analysis, 4 :73-91, 2000. (Page 105.)

John Melonakos, Eric Pichon, Sigurd Angenent, and Allen Tannenbaum. Finsler
active contours. IEEE Trans. Pattern Anal. Mach. Intell., 30(3) :412-423, 2008.
(Page 105.)

Nicolas Merlet and Josiane Zerubia. New prospects in line detection by dyna-
mic programming. [EEE Trans. Pattern Anal. Mach. Intell.; 18(4) :426 431, 1996.
(Page 104.)

Joseph S. B. Mitchell, David M. Mount, and Christos H. Papadimitriou. The discrete
geodesic problem. SIAM J. Comput., 16(4) :647-668, 1987. (Page 99.)

Joseph S. B. Mitchell and Christos H. Papadimitriou. The weighted region problem :
finding shortest paths through a weighted planar subdivision. J. ACM, 38(1) :18 73,
1991. (Page 27.)

J.S.B. Mitchell. Planning shortest paths (phd thesis). Technical report, Department
of Operations Research, Stanford University, August 1986. (Page 27.)

E.F. Moore. The shortest path through a maze. In Harvard University Press, editor,
Proceedings of an International Synposium on the Theory of Switching (Cambridge,
Massachusetts), pages 285—-292, Cambridge, April 1959. (Page 40.)

M.Péchaud, R.Keriven, and T.Papadopoulo. Combinatorial optimization for elec-
trode labeling of EEG caps. Technical Report 07-32, CERTIS, July 2007. (Pages 183
and 188.)



BIBLIOGRAPHIE 207

[141]

[142]

[143]

[144]

[145)

[146]

[147]

[148)

[149]

[150]

[151]

[152]

K.P. Murphy, Y. Weiss, and M.I. Jordan. Loopy belief propagation for approximate
inference : An empirical study. In Fifteenth Conference on Uncertainty in Artificial
Intelligence, pages 467 475, 1999. (Pages 189, 190, and 192.)

Delphine Nain, Anthony Yezzi, and Greg Turk. Vessel segmentation using a shape
driven flow. In Medical Image Computing and Comptuer-assisted Intervention -
MICCAI pages 51 59, 2004. (Page 105.)

M. Niemeijer, J.J. Staal, B. van Ginneken, M. Loog, and M.D. Abramoff. Com-
parative study of retinal vessel segmentation methods on a new publicly available
database. In J. Michael Fitzpatrick and M. Sonka, editors, SPIE Medical Imaging,
volume 5370, pages 648 656. SPIE, SPIE, 2004. (Pages 103 and 119.)

Bjorn Nilsson and Anders Heyden. Segmentation of dense leukocyte clusters. In
MMBIA 01 : Proceedings of the IEEE Workshop on Mathematical Methods in Bio-
medical Image Analysis (MMBIA’01), page 221, Washington, DC, USA, 2001. IEEE
Computer Society. (Page 30.)

Lauren O’Donnell, Steven Haker, and Carl-Fredrik Westin. New approaches to esti-
mation of white matter connectivity in diffusion tensor mri : Elliptic pdes and geode-
sics in a tensor-warped space. In MICCAI ’02 : Proceedings of the 5th International
Conference on Medical Image Computing and Computer-Assisted Intervention-Part

I, pages 459-466, London, UK, 2002. Springer-Verlag. (Page 31.)

S. Ogawa, T.M. Lee, A.S. Nayak, and P. Glynn. Oxygenation-sensitive contrast
in magnetic resonance image of rodent brain at high magnetic fields. Magnetic
Resonance in Medecine, 14 :68-78, 1990. (Page 135.)

G. J. M. Parker and D. C. Alexander. Probabilistic anatomical connectivity derived
from the microscopic persistent angular structure of cerebral tissue. Philosophical
Transactions of the Royal Society, Series B, 360 :893 902, 2005. (Page 156.)

J. Pearl. Probabilistic Reasoning in Intelligent Systems : Networks of Plausible In-
ference. Morgan Kaufmann Publishers, Inc., 1988. (Page 184.)

J. Pearl. Probabilistic Reasonning in Intellignet System :Networks of Plausible In-
ference. Morgan Kaufmann Publishers Inc., 1988. (Page 189.)

Judea Pearl. Heuristics : intelligent search strategies for computer problem solving.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1984. (Page 46.)

T. Peng, I. H. Jermyn, V. Prinet, and J. Zerubia. An extended phase field higher-
order active contour model for networks and its application to road network extrac-
tion from vhr satellite images. In Proc. Furopean Conference on Computer Vision
(ECCV), Marseille, France, octobre 2008. (Page 105.)

P. Perez, A. Blake, and M. Gangnet. JetStream : probabilistic contour extraction
with particles. In Proceedings of IEEE International Conference on Computer Vi-
sion, ICCV’01, volume 2, pages 524 531, Vancouver, Canada, July 2001. (Page 105.)



208

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

BIBLIOGRAPHIE

P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion.
IEEFE Transactions ob Pattern Analysis and Machine Intelligence, 12(7) :629-639,
1990. (Page 104.)

M. Perrin, C. Poupon, Y. Cointepas, B. Rieul, N. Golestani, C. Pallier, D. Riviere,
A. Constantinesco, D. Le Bihan, and J.-F. Mangin. Fiber tracking in g-ball fields
using regularized particle trajectories. In IPMI, pages 52 63, 2005. (Page 156.)

Gabriel Peyré and Laurent D. Cohen. Geodesic remeshing using front propagation.
Int. J. Comput. Vision, 69(1) :145 156, 2006. (Page 32.)

Gabriel Peyre and Laurent D. Cohen. Landmark-based geodesic computation for
heuristically driven path planning. Computer Vision and Pattern Recognition, IEEE
Computer Society Conference on, 2 :2229 2236, 2006. (Page 66.)

K. Polthier and M. Schmies. Geodesic flow on polyhedral surfaces. In E. Groller,
H. Loffelmann, and W. Ribarsky, editors, Data Visualization 99, pages 179 188.
Springer-Verlag Wien, 1999. (Page 32.)

Konrad Polthier and Markus Schmies. Straightest geodesics on polyhedral surfaces.
In SIGGRAPH 06 : ACM SIGGRAPH 2006 Courses, pages 30 38, New York, NY,
USA, 2006. ACM. (Page 32.)

Kelvin Poon, Ghassan Hamarneh, and Rafeef Abugharbieh. Live-vessel : Extending
livewire for simultaneous extraction of optimal medial and boundary paths in vascu-
lar images. In Nicholas Ayache, Sébastien Ourselin, and Anthony Maeder, editors,
Medical Image Computing and Computer-Assisted Intervention — MICCAI 2007,
volume 4792 of LNCS, pages 444-451. Springer, 2007. (Page 104.)

Miranda Poon, Ghassan Hamarneh, and Rafeef Abugharbieh. Live-vessel : Exten-
ding livewire for simultaneous extraction of optimal medial and boundary paths in
vascular images. In Proceedings of MICCAI (2), pages 444-451, 2007. (Page 106.)

Emmanuel Prados. Application of the theory of the viscosity solutions to the Shape
From Shading problem. PhD thesis, University of Nice-Sophia Antipolis, France,
October 2004. (Page 100.)

Emmanuel Prados and Olivier Faugeras. Unifying approaches and removing unrea-
listic assumptions in shape from shading : Mathematics can help. In Proceedings
of the 8th European Conference on Computer Vision, Prague, Czech Republic, vo-
lume 3024 of Lecture Notes in Computer Science, pages 141-154. Springer, 2004.
(Page 30.)

Emmanuel Prados, Christophe Lenglet, Jean-Philippe Pons, Nicolas Wotawa, Ra-
chid Deriche, Olivier Faugeras, and Stefano Soatto. Control theory and fast marching
techniques for brain connectivity mapping. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, New York, NY, June, 2006, volume 1,
pages 1076 1083. IEEE, June 2006. (Pages 80, 157, 168, and 178.)



BIBLIOGRAPHIE 209

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

V. Prinet, O. Monga, C. Ge, S. L. Xie, and S. D. Ma. Thin network extraction in
3d images : Application to medical angiograms. In ICPR 96 : Proceedings of the
International Conference on Pattern Recognition, volume 3, page 386, Washington,

DC, USA, 1996. IEEE Computer Society. (Page 104.)

M. Péchaud, M. Descoteaux, and R. Keriven. Brain connectivity using geodesics in
hardi. In MICCAI, London, England, September 2009. (Page 157.)

M. Péchaud, R. Keriven, T. Papadopoulo, and J.-M. Badie. Combinatorial optimi-
zation for electrode labeling of eeg caps. In MICCAI, 10th International Conference,
Brisbane, Australia, Oct 2007. (Pages 11 and 183.)

M. Péchaud, G. Peyré, and R. Keriven. Extraction of tubular structures over an
orientation domain. In CVPR °09 : Proceedings of the 2009 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Washington, DC, USA,
2009. IEEE Computer Society. (Pages 11 and 102.)

M. Péchaud, I. Vanzetta, T. Deneux, and R. Keriven. Sift-based sequence registra-
tion and flow-based cortical vessel segmentation applied to high resolution optical
imaging data. In Proceedings of ISBI 2008, Paris, May 2008. (Pages 11 and 102.)

A. Raj and R. Zabih. A graph cut algorithm for generalized image deconvolution.
In ICCV 05, pages 1048 1054, Washington, DC, USA, 2005. IEEE. (Page 188.)

R. M. Rangayyan, F. J. Ayres, F. Oloumi, F. Oloumi, and P. Eshghzadeh-Zanjani.
Detection of blood vessels in the retina with multiscale Gabor filters. Journal of
Electronic Imaging, 17(2) :023018 :1-7, 2008. (Page 104.)

E. Ricci and R. Perfetti. Retinal blood vessel segmentation using line operators and
support vector classification. IEEE Transactions on Medical Irmaging, 26(10) :1357
1365, 2007. (Page 105.)

J. Ricny. A-priori information driven model for road segmentation in high resolution
images. In OBIA06, pages xx—yy, 2006. (Page 105.)

Van Uitert Robert and Bitter Ingmar. Subvoxel precise skeletons of volumetric data
based on fast marching methods. Medical physics, 34 :627 638, 2007. (Page 26.)
Elisabeth Rouy and Agnés Tourin. A viscosity solutions approach to shape-from-
shading. SIAM Journal on Numerical Analysis, 29(3) :867-884, 1992. (Pages 30,
57, 58, 60, and 66.)

G. S. Russell, K. J. Eriksen, P. Poolman, P. Luu, and D. M. Tucker. Geodesic photo-
grammetry for localizing sensor positions in dense-array eeg. Clinical Neurophysio-

logy, 116 :1130-1140, 2005 (see also http ://www.egi.com/c_gps.html). (Page 184.)

Lang S. Introduction to Differentiable Manifolds. Springer Verlag, New York, second
edition, 2002. (Page 31.)

Alberto Santamaria-Pang, C. M. Colbert, P. Saggau, and Ioannis A. Kakadiaris.

Automatic centerline extraction of irregular tubular structures using probability



210

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

BIBLIOGRAPHIE

volumes from multiphoton imaging. In Proceedings of MICCAI (2), pages 486-494,
2007. (Page 105.)

Peter Savadjiev, Jennifer S. W. Campbell, Maxime Descoteaux, Rachid Deriche,
G. Bruce Pike, and Kaleem Siddiqgi. Labeling of ambiguous sub-voxel fibre bundle
configurations in high angular resolution diffusion mri. NeuroImage, 41(1) :58 68,
2008. (Page 156.)

Michiel Schaap, Rashindra Manniesing, Thor Smal, Theo van Walsum, Aad van der
Lugt, and Wiro J. Niessen. Bayesian tracking of tubular structures and its applica-
tion to carotid arteries in cta. In Proceedings of MICCAI (2), pages 562-570, 2007.
(Page 105.)

H. Schmitt, Michael Grass, Volker Rasche, Oliver Schramm, S. Hihnel, and K. Sar-
tor. An x-ray based method for the determination of the contrast agent propagation
in 3d vessel structures. IEEE Transactions on Medical Imaging, 21(3) :251-262,
2002. (Page 104.)

Alexander Schrijver. Combinatorial optimization : polyhedra and efficiency. volume

A paths, flows, matchings, chapter 1-38. Springer, 2003. Schrijver. (Page 40.)

E.L. Schwartz, A. Shaw, and E. Wolfson. A numerical solution to the generalized
mapmaker’s problem : Flattening nonconvex polyhedral surfaces. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 11(9) :1005-1008, 1989. (Page 32.)

T.B. Sebastian, P.N. Klein, and B.B. Kimia. Alignment-based recognition of shape
outlines. In Jth International Workshop on Visual Form, pages 606-618, 2001.
(Page 186.)

M. Sermesant, E. Konukoglu, H. Delingette, Y. Coudiere, P. Chinchaptanam, K.S.
Rhode, R. Razavi, and N. Ayache. An anisotropic multi-front fast marching method
for real-time simulation of cardiac electrophysiology. In Proceedings of Functional
Imaging and Modeling of the Heart 2007 (FIMH’07), volume 4466 of LNCS, pages
160-169, 7-9 June 2007. (Page 30.)

Maxime Sermesant, Ender Konukoglu, Hervé Delingette, Yves Coudiére, Phani Chin-
chapatnam, Kawal S. Rhode, Reza Razavi, and Nicholas Ayache. An anisotropic
multi-front fast marching method for real-time simulation of cardiac electrophysio-
logy. In Frank B. Sachse and Gunnar Seemann, editors, FIMH, volume 4466 of
Lecture Notes in Computer Science, pages 160 169. Springer, 2007. (Page 31.)

J. Sethian. Level set methods and fast marching methods : Evolving interfaces in
computational geometry, 1998. (Pages 36, 39, and 77.)

J. A. Sethian. A fast marching level set method for monotonically advancing fronts.
Proceedings of the National Academy of Sciences of the United States of America,
93(4) :1591 1595, 1996. (Pages 53 and 59.)



BIBLIOGRAPHIE 211

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

J. A. Sethian. Level Set Methods and Fast Marching Methods : Fvolving Inter-
faces in Computational Geometry, Fluid Mechanics, Computer Vision, and Mate-
rials Science. Cambridge University Press, 1999. (Pages 25, 26, 32, 66, and 105.)

James A. Sethian and Er Mihai Popovici. Three dimensional traveltime computation
using the fast marching method, in expanded abstracts from the 67th ann. Internat.
Mtg. of Soc. Expl. Geophys, 1778 :1778-1781, 1997. (Page 30.)

James A. Sethian and Alexander Vladimirsky. Ordered upwind methods for sta-
tic hamilton—jacobi equations : Theory and algorithms. SIAM J. Numer. Anal.,
41(1) :325 363, 2003. (Page 99.)

K. K. Seunarine, P. A. Cook, K. Embleton, G. J. M. Parker, and D. C. Alexan-
der. A general framework for multiple-fibre pico tractography. In Medical Image
Understanding and Analysis, 2006. (Page 156.)

Kaleem Siddiqi and Stephen Pizer, editors. Springer. Addison-Wesley Longman
Publishing Co., Inc., 2008. (Page 106.)

C. Sinthanayothin, J. Boyce, and C. T. Williamson. Automated localisation of the
optic disc, fovea, and retinal blood vessels from digital colour fundus images. British
Journal of Ophthalmology, 83 :902 910, 1999. (Page 105.)

Michael J. De Smith, Michael F. Goodchild, and Paul A. Longley. Geospatial Analy-
sis : A Comprehensive Guide to Principles, Techniques and Software Tools. Matador,
2006. (Page 104.)

J. V. B. Soares and R. M. Cesar-Jr. Segmentation of retinal vasculature using
wavelets and supervised classification : Theory and implementation. In H. F. Jelinek
and M. J. Cree, editors, Automated Image Detection of Retinal Pathology. CRC
Press, 2007. To appear. (Page 104.)

E. Sorantin, C. Halmai, B. Erdohelyi, K. Palagyi, L. Nyul, K. Olle, B. Geiger,
F. Lindbichler, G. Friedrich, and K. Kiesler. Spiral-ct-based assessment of tra-
cheal stenoses using 3-d-skeletonization. IFEE Transactions on Medical Imgaging,
21(3) :263-273, 2002. (Page 106.)

Alon Spira and Ron Kimmel. An efficient solution to the eikonal equation on pa-
rametric manifolds. In In INTERPHASE 2003 meeting, Isaac Newton Institute for
Mathematical Sciences, 2003 Preprints, Preprint no. NI03045-CPD, pages 315 327,
2003. (Page 99.)

J.J. Staal, M.D. Abramoff, M. Niemeijer, M.A. Viergever, and B. van Ginneken.
Ridge based vessel segmentation in color images of the retina. IFEFE Transactions
on Medical Imaging, 23(4) :501-509, 2004. (Page 119.)

Carsten Steger. An unbiased detector of curvilinear structures. Technical report,
FG BV, Informatik IX, Technische Universitat Munchen, 1996. (Page 105.)



212

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

BIBLIOGRAPHIE

L Sukkaew, B Uyyanonvara, S A Barman, and J Jareanjita. Automated vessels detec-
tion on infant retinal images. In Proceedings of International Conference on Control,
Automation and Systems (ICCAS2004), pages 321 325, August 2004. (Page 104.)

Vitaly Surazhsky, Tatiana Surazhsky, Danil Kirsanov, Steven J. Gortler, and Hugues
Hoppe. Fast exact and approximate geodesics on meshes. ACM Trans. Graph.,
24(3) :553-560, 2005. (Page 99.)

F. SA@gonne, E. Grimson, and B. Fischl. Topological correction of subcortical seg-
mentation. In International Conference on Medical Image Computing and Computer
Assisted Intervention, Montreal, Nov 2003. (Page 26.)

Xiaodong Tao, Xiao Han, Maryam E. Rettmann, Jerry L. Prince, and Christos
Davatzikos. Statistical study on cortical sulci of human brains. In IPMI ’01 : Pro-
ceedings of the 17th International Conference on Information Processing in Medical

Imaging, pages 475-487, London, UK, 2001. Springer-Verlag. (Page 33.)

Alexandru Telea and Jarke J. van Wijk. An augmented fast marching method for
computing skeletons and centerlines. In VISSYM ’02 : Proceedings of the symposium
on Data Visualisation 2002, pages 251, Aire-la-Ville, Switzerland, Switzerland,
2002. Eurographics Association. (Page 26.)

John T.Moy. OSPF : Anatomy of an Internet Routing Protocol. Addison Wesley,
200. (Page 21.)

Y. A. Tolias and S. M. Panas. A fuzzy vessel tracking algorithm for retinal images
based on fuzzy clustering. IEEE Transactions on Medical Imaging, 17 :263 273,
April 1998. (Page 105.)

J-Donald Tournier, Fernando Calamante, and Alan Connelly. Robust determina-
tion of the fibre orientation distribution in diffusion mri : Non-negativity constrai-
ned super-resolved spherical deconvolution. NeuroImage, 35(4) :1459-1472, 2007.
(Pages 156 and 164.)

T. Tozaki, Y. Kawata, N. Niki, H. Ohmatsu, , and N. Moriyama. 3-d visualization

and Medical Imaging Conference, 3 :1470-1474, 1995. (Page 106.)

John N. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE
Transactions on Automatic Control, 40 :1528-1538, 1995. (Page 99.)

David S. Tuch. Diffusion MRI of Complex Tissue Structure. PhD thesis, Harvard
University and Massachusetts Institute of Technology, 2002. (Page 156.)

I. Vanzetta, T. Deneux, G. S. Masson, and O. D. Faugeras. Cerebral blood flow
recorded at high sensitivity in two dimensions using high resolution optical imaging.

In ISBI, pages 1264-1267, 2006. (Pages 136, 138, and 139.)

Er Vasilevskiy and Kaleem Siddiqi. Flux maximizing geometric flows. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 24 :1565 1578, 2002. (Page 105.)



BIBLIOGRAPHIE 213

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

V.Kolmogorov. Convergent tree-reweighted message passing for energy minimiza-
tion. Technical Report MSR-TR-2005-38, 2005. (Page 191.)

G. Vosselman and J. de Knecht. Road tracing by profile matching and kalman
filtering. In Ascona95, pages 265 274, 1995. (Page 105.)

V.J. Wedeen, R.P. Wang, J.D. Schmahmann, T. Benner, W.Y.I. Tseng, G. Dai,
D.N. Pandya, P. Hagmann, H. D’Arceuil, and A.J. de Crespigny. Diffusion spec-
trum magnetic resonance imaging (dsi) tractography of crossing fibers. NeuroImage,
41(4) :1267-1277, July 2008. (Page 156.)

Y. Weiss and D. Freeman. On the optimality of solutions of the max-product belief-
propagation algorithm in arbitrary graphs. IEEETIT, 47, 2001. (Pages 189 and 190.)

J.W. J. Williams. Algorithm 232 : Heapsort. Communications of the ACM, 7 :347—
348, 1964. (Page 45.)

Yong Yang, Shuying Hung, and Nini Rao. An automatic hybrid method for retinal
blood vessel extraction. International Journal of applied Mathematics and Computer

Science, 18(3) :399-407, 2008. (Page 104.)

Liron Yatziv, Alberto Bartesaghi, and Guillermo Sapiro. O(n) implementation of
the fast marching algorithm. J. Comput. Phys., 212(2) :393-399, 2006. (Page 67.)
P J Yim and P L Choyke. Gray-scale skeletonization of small vessels in magnetic
resonance angiography. IEEFE Transactions on Medical Imaging, 19 :568-576, june
2000. (Page 104.)

Fan Zhang, Edwin R. Hancock, Casey Goodlett, and Guido Gerig. Probabilistic
white matter fiber tracking using particle filtering and von mises-fisher sampling.

Medical Image Analysis, 13(1) :5 18, Febuary 2008. (Page 156.)

Z. Zhang. iterative point matching for registration of free-form curves. Technical
Report RR-1658, INRIA, 1992. (Page 185.)

J. Zhou, W.F. Bischof, and T.M. Caelli. Robust and efficient road tracking in aerial
images. In CMRT05, pages xx—yy, 2005. (Page 105.)

L. Zhou, M. S. Rzeszotarski, L. J. Singerman, and J. M. Chokreff. The detection
and quantification of retinopathy using digital angiograms. IEFE Transactions on
Medical Imaging, 13(4) :619-626, 1994. (Page 105.)

B. Zitova and J. Flusser. Image registration methods : a survey. Image and Vision
Computing, 21(11) :977 1000, October 2003. (Page 136.)



	Table of contents
	Introduction
	Shortest paths
	Generalities on shortest paths
	Discrete Shortest Paths
	Directed graphs
	Undirected Graph
	Existence and uniqueness of shortest paths
	Applications

	Continuous shortest paths and distance maps
	Different frameworks for continuous shortest paths
	Theoretical aspects

	Conclusion

	Shortest paths computation
	Discrete shortest paths computation
	Dijkstra algorithm

	From discrete to continuous -- a first attempt
	Fast-Marching on a regular grid
	Update step
	Convergence proof
	Increasing the neighborhood system
	Numerical results
	Generalisation to nD
	A step toward anisotropy

	Anisotropic Fast-Marching, general case
	Solution computation in a simplex
	Update scheme
	Convergence proof

	Numerical Results
	Dimension 2
	Dimension 3

	Other algorithms for shortest paths computation
	Conclusion, discussion

	Tubular structures segmentation using shortest paths
	Tubular structures segmentation
	State of the art
	Shortest paths methods
	Overview of our method

	A framework for tubular structure segmentation
	Local Vessel Model
	Rotated and Scaled Models
	Scale/Orientation Lifting
	Lifted Potential
	Distance Map and Geodesic Computation
	Shortest Paths and 4D curves
	Another interpretation
	Evaluation of the Geodesic Centerlines
	Conclusion and Discussion

	Application to flow-based extraction
	Introduction
	Pre-processing
	Flow-based vessels extraction
	Results
	Conclusion and Discussion

	Application to Network of Curves Extraction
	Introduction
	Extension Domain
	Network Extension
	Network Junctions
	Vessels Cropping
	Overview of the Algorithm
	Numerical Experiments
	Conclusion and discussion


	HARDI-tracking using shortest paths
	Method
	HARDI Riemannian manifold

	Implementation
	Experimental results
	Real HARDI data
	Geodesic connectivity results
	Comparison with existing methods
	Approximation quality

	Conclusion and Discussion

	Conclusion générale
	Appendix to shortest paths computation
	Shortest paths computation on a subset of Rn or V
	Connectivity measures
	Definitions, computations
	Numerical results


	Electrodes registration in EEG using discrete optimization
	Introduction
	Problem definition
	Motivation
	Proposed framework
	Energy minimization
	LBP
	Improving belief propagation

	Experiments
	Discussion

	Bibliography

